2 research outputs found

    Image Partitioning based on Semidefinite Programming

    Full text link
    Many tasks in computer vision lead to combinatorial optimization problems. Automatic image partitioning is one of the most important examples in this context: whether based on some prior knowledge or completely unsupervised, we wish to find coherent parts of the image. However, the inherent combinatorial complexity of such problems often prevents to find the global optimum in polynomial time. For this reason, various approaches have been proposed to find good approximative solutions for image partitioning problems. As an important example, we will first consider different spectral relaxation techniques: based on straightforward eigenvector calculations, these methods compute suboptimal solutions in short time. However, the main contribution of this thesis is to introduce a novel optimization technique for discrete image partitioning problems which is based on a semidefinite programming relaxation. In contrast to approximation methods employing annealing algorithms, this approach involves solving a convex optimization problem, which does not suffer from possible local minima. Using interior point techniques, the solution of the relaxation can be found in polynomial time, and without elaborate parameter tuning. High quality solutions to the original combinatorial problem are then obtained with a randomized rounding technique. The only potential drawback of the semidefinite relaxation approach is that the number of variables of the optimization problem is squared. Nevertheless, it can still be applied to problems with up to a few thousand variables, as is demonstrated for various computer vision tasks including unsupervised segmentation, perceptual grouping and image restoration. Concerning problems of higher dimensionality, we study two different approaches to effectively reduce the number of variables. The first one is based on probabilistic sampling: by considering only a small random fraction of the pixels in the image, our semidefinite relaxation method can be applied in an efficient way while maintaining a reliable quality of the resulting segmentations. The second approach reduces the problem size by computing an over-segmentation of the image in a preprocessing step. After that, the image is partitioned based on the resulting "superpixels" instead of the original pixels. Since the real world does not consist of pixels, it can even be argued that this is the more natural image representation. Initially, our semidefinite relaxation method is defined only for binary partitioning problems. To derive image segmentations into multiple parts, one possibility is to apply the binary approach in a hierarchical way. Besides this natural extension, we also discuss how multiclass partitioning problems can be solved in a direct way based on semidefinite relaxation techniques

    Unsupervised Image Partitioning with Semidefinite Programming

    Full text link
    We apply a novel optimization technique, semidefinite programming, to the unsupervised partitioning of images. Representing images by graphs which encode pairwise (dis)similarities of local image features, a partition of the image into coherent groups is computed by determining optimal balanced graph cuts. Unlike recent work in the literature, we do not make any assumption concerning the objective criterion like metric pairwise interactions, for example. Moreover, no tuning parameter is necessary to compute the solution. We prove that, from the optimization point of view, our approach cannot perform worse than spectral relaxation approaches which, conversely, may completely fail for the unsupervised choice of the eigenvector threshold
    corecore