3 research outputs found

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency

    Mapping invasive plants using RPAS and remote sensing

    Get PDF
    The ability to accurately detect invasive plant species is integral in their management, treatment, and removal. This study focused on developing and evaluating RPAS-based methods for detecting invasive plant species using image analysis and machine learning and was conducted in two stages. First, supervised classification to identify the invasive yellow flag iris (Iris pseudacorus) was performed in a wetland environment using high-resolution raw imagery captured with an uncalibrated visible-light camera. Colour-thresholding, template matching, and de-speckling prior to training a random forest classifier are explored in terms of their benefits towards improving the resulting classification of YFI plants within each image. The impacts of feature selection prior to training are also explored. Results from this work demonstrate the importance of performing image processing and it was found that the application of colour thresholding and de-speckling prior to classification by a random forest classifier trained to identify patches of YFI using spectral and textural features provided the best results. Second, orthomosaicks generated from multispectral imagery were used to detect and predict the relative abundance of spotted knapweed (Centaurea maculosa) in a heterogeneous grassland ecosystem. Relative abundance was categorized in qualitative classes and validated through field-based plant species inventories. The method developed for this work, termed metapixel-based image analysis, segments orthomosaicks into a grid of metapixels for which grey-level co-occurrence matrix (GLCM)-based statistics can be computed as descriptive features. Using RPAS-acquired multispectral imagery and plant species inventories performed on 1m2 quadrats, a random forest classifier was trained to predict the qualitative degree of spotted knapweed ground-cover within each metapixel. Analysis of the performance of metapixel-based image analysis in this study suggests that feature optimization and the use of GLCM-based texture features are of critical importance for achieving an accurate classification. Additional work to further test the generalizability of the detection methods developed is recommended prior to deployment across multiple sites.remote sensingremotely piloted aircraft systemsRPASinvasive plant speciesmachine learnin
    corecore