53 research outputs found

    Unsupervised Place Recognition with Deep Embedding Learning over Radar Videos

    Full text link
    We learn, in an unsupervised way, an embedding from sequences of radar images that is suitable for solving place recognition problem using complex radar data. We experiment on 280 km of data and show performance exceeding state-of-the-art supervised approaches, localising correctly 98.38% of the time when using just the nearest database candidate.Comment: to be presented at the Workshop on Radar Perception for All-Weather Autonomy at the IEEE International Conference on Robotics and Automation (ICRA) 202

    Prototypical Contrastive Learning of Unsupervised Representations

    Full text link
    This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that addresses the fundamental limitations of instance-wise contrastive learning. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it implicitly encodes semantic structures of the data into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL

    Disentangled Contrastive Learning for Learning Robust Textual Representations

    Full text link
    Although the self-supervised pre-training of transformer models has resulted in the revolutionizing of natural language processing (NLP) applications and the achievement of state-of-the-art results with regard to various benchmarks, this process is still vulnerable to small and imperceptible permutations originating from legitimate inputs. Intuitively, the representations should be similar in the feature space with subtle input permutations, while large variations occur with different meanings. This motivates us to investigate the learning of robust textual representation in a contrastive manner. However, it is non-trivial to obtain opposing semantic instances for textual samples. In this study, we propose a disentangled contrastive learning method that separately optimizes the uniformity and alignment of representations without negative sampling. Specifically, we introduce the concept of momentum representation consistency to align features and leverage power normalization while conforming the uniformity. Our experimental results for the NLP benchmarks demonstrate that our approach can obtain better results compared with the baselines, as well as achieve promising improvements with invariance tests and adversarial attacks. The code is available in https://github.com/zjunlp/DCL.Comment: Work in progres
    • …
    corecore