37 research outputs found

    Machine Learning Methods to Exploit the Predictive Power of Open, High, Low, Close (OHLC) Data

    Get PDF
    Novel machine learning techniques are developed for the prediction of financial markets, with a combination of supervised, unsupervised and Bayesian optimisation machine learning methods shown able to give a predictive power rarely previously observed. A new data mining technique named Deep Candlestick Mining (DCM) is proposed that is able to discover highly predictive dataset specific candlestick patterns (arrangements of open, high, low, close (OHLC) aggregated price data structures) which significantly outperform traditional candlestick patterns. The power that OHLC features can provide is further investigated, using LSTM RNNs and XGBoost trees, in the prediction of a mid-price directional change, defined here as the mid-point between either the open and close or high and low of an OHLC bar. This target variable has been overlooked in the literature, which is surprising given the relative ease of predicting it, significantly in excess of noisier financial quantities. However, the true value of this quantity is only known upon the period's ending – i.e. it is an after-the-fact observation. To make use of and enhance the remarkable predictability of the mid-price directional change, multi-period predictions are investigated by training many LSTM RNNs (XGBoost trees being used to identify powerful OHLC input feature combinations), over different time horizons, to construct a Bayesian optimised trend prediction ensemble. This fusion of long-, medium- and short-term information results in a model capable of predicting market trend direction to greater than 70% better than random. A trading strategy is constructed to demonstrate how this predictive power can be used by exploiting an artefact of the LSTM RNN training process which allows the trading system to size and place trades in accordance with the ensemble's predictive certainty

    Machine Learning-Driven Decision Making based on Financial Time Series

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Predicting stock price direction using machine learning models

    Get PDF
    The present work aims to evaluate the efficiency of machine learning models in predicting next-day stock price direction, using technical indicators and candlestick patterns. This study considered 440 stocks from the Standard & Poor's 500 index and for each one of them, three different binary models were developed based on the following machine learning algorithms: Deep Neural Network, Support Vector Machine, and Random Forest. Additionally, a naive predictor was created to help compare the models results. The models were judged based on their accuracy and financial returns. The results showed that the machine learning models achieved similar results to the naive model and failed to accurately predict the next-day stock price direction using the selected features, indicating that there is no apparent relationship between them.O presente trabalho visa avaliar a eficiência dos modelos de aprendizagem automática na previsão da direção do preço de ações no dia seguinte, utilizando indicadores técnicos e padrões de vela. Este estudo considerou 440 ações do índice Standard & Poor's 500 e, para cada uma delas, foram desenvolvidos três modelos binários diferentes com base nos seguintes algoritmos de aprendizagem automática: Deep Neural Network, Support Vector Machine, e Random Forest. Além disso, foi criado um naive predictor para ajudar a comparar os resultados dos modelos. Os modelos foram julgados com base na sua precisão e retorno financeiro. Os resultados mostraram que os modelos de aprendizagem automática alcançaram resultados semelhantes aos do modelo naive e não conseguiram prever com precisão a direção do preço das ações no dia seguinte, utilizando as características selecionadas, indicando que não existe uma relação aparente entre os mesmos

    Forex Trading Signal Extraction with Deep Learning Models

    Get PDF
    The rise of AI technology has popularized deep learning models for financial trading prediction, promising substantial profits with minimal risk. Institutions like Westpac, Commonwealth Bank of Australia, Macquarie Bank, and Bloomberg invest heavily in this transformative technology. Researchers have also explored AI's potential in the exchange rate market. This thesis focuses on developing advanced deep learning models for accurate forex market prediction and AI-powered trading strategies. Three deep learning models are introduced: an event-driven LSTM model, an Attention-based VGG16 model named MHATTN-VGG16, and a pre-trained model called TradingBERT. These models aim to enhance signal extraction and price forecasting in forex trading, offering valuable insights for decision-making. The first model, an LSTM, predicts retracement points crucial for identifying trend reversals. It outperforms baseline models like GRU and RNN, thanks to noise reduction in the training data. Experiments determine the optimal number of timesteps for trend identification, showing promise for building a robotic trading platform. The second model, MHATTN-VGG16, predicts maximum and minimum price movements in forex chart images. It combines VGG16 with multi-head attention and positional encoding to effectively classify financial chart images. The third model utilizes a pre-trained BERT architecture to transform trading price data into normalized embeddings, enabling meaningful signal extraction from financial data. This study pioneers the use of pre-trained models in financial trading and introduces a method for converting continuous price data into categorized elements, leveraging the success of BERT. This thesis contributes innovative approaches to deep learning in algorithmic trading, offering traders and investors precision and confidence in navigating financial markets

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Recent Advances in Theory and Methods for the Analysis of High Dimensional and High Frequency Financial Data

    Get PDF
    Recently, considerable attention has been placed on the development and application of tools useful for the analysis of the high-dimensional and/or high-frequency datasets that now dominate the landscape. The purpose of this Special Issue is to collect both methodological and empirical papers that develop and utilize state-of-the-art econometric techniques for the analysis of such data

    Supervised Learning Models to Predict Stock Direction Within Different Sectors in a Bull and Bear Market

    Get PDF
    Forecasting stock market price movement is a well researched and an alluring topic within the machine learning and financial realm. Supervised machine learning algorithms such as Random Forest (RF) and Support Vector Machines (SVM) have been used independently to gain insight on the market. With such volatility in the market the scope of this study will utilized the RF and SVM in a very volatility market to determine if these models will perform at a high level or outperform each other in both markets. This relative study is performed on 16 stocks in 4 different sectors over the bear market ”housing crash” of 2008 . The model utilized technical indicators as the respective parameters to assist in predicting the stock price movement when determining the performance of each model. Despite the No Free Lunch Theorem stating one model can not out perform another model, the study displayed higher accuracy for the RF model. Each model was evaluated using the confusion metrics to calculate the precision, recall, and F1 score
    corecore