258 research outputs found

    SelfOdom: Self-supervised Egomotion and Depth Learning via Bi-directional Coarse-to-Fine Scale Recovery

    Full text link
    Accurately perceiving location and scene is crucial for autonomous driving and mobile robots. Recent advances in deep learning have made it possible to learn egomotion and depth from monocular images in a self-supervised manner, without requiring highly precise labels to train the networks. However, monocular vision methods suffer from a limitation known as scale-ambiguity, which restricts their application when absolute-scale is necessary. To address this, we propose SelfOdom, a self-supervised dual-network framework that can robustly and consistently learn and generate pose and depth estimates in global scale from monocular images. In particular, we introduce a novel coarse-to-fine training strategy that enables the metric scale to be recovered in a two-stage process. Furthermore, SelfOdom is flexible and can incorporate inertial data with images, which improves its robustness in challenging scenarios, using an attention-based fusion module. Our model excels in both normal and challenging lighting conditions, including difficult night scenes. Extensive experiments on public datasets have demonstrated that SelfOdom outperforms representative traditional and learning-based VO and VIO models.Comment: 14 pages, 8 figures, in submissio

    FSNet: Redesign Self-Supervised MonoDepth for Full-Scale Depth Prediction for Autonomous Driving

    Full text link
    Predicting accurate depth with monocular images is important for low-cost robotic applications and autonomous driving. This study proposes a comprehensive self-supervised framework for accurate scale-aware depth prediction on autonomous driving scenes utilizing inter-frame poses obtained from inertial measurements. In particular, we introduce a Full-Scale depth prediction network named FSNet. FSNet contains four important improvements over existing self-supervised models: (1) a multichannel output representation for stable training of depth prediction in driving scenarios, (2) an optical-flow-based mask designed for dynamic object removal, (3) a self-distillation training strategy to augment the training process, and (4) an optimization-based post-processing algorithm in test time, fusing the results from visual odometry. With this framework, robots and vehicles with only one well-calibrated camera can collect sequences of training image frames and camera poses, and infer accurate 3D depths of the environment without extra labeling work or 3D data. Extensive experiments on the KITTI dataset, KITTI-360 dataset and the nuScenes dataset demonstrate the potential of FSNet. More visualizations are presented in \url{https://sites.google.com/view/fsnet/home}Comment: 12 pages. conditionally accepted by IEEE T-AS

    DEUX: Active Exploration for Learning Unsupervised Depth Perception

    Full text link
    Depth perception models are typically trained on non-interactive datasets with predefined camera trajectories. However, this often introduces systematic biases into the learning process correlated to specific camera paths chosen during data acquisition. In this paper, we investigate the role of how data is collected for learning depth completion, from a robot navigation perspective, by leveraging 3D interactive environments. First, we evaluate four depth completion models trained on data collected using conventional navigation techniques. Our key insight is that existing exploration paradigms do not necessarily provide task-specific data points to achieve competent unsupervised depth completion learning. We then find that data collected with respect to photometric reconstruction has a direct positive influence on model performance. As a result, we develop an active, task-informed, depth uncertainty-based motion planning approach for learning depth completion, which we call DEpth Uncertainty-guided eXploration (DEUX). Training with data collected by our approach improves depth completion by an average greater than 18% across four depth completion models compared to existing exploration methods on the MP3D test set. We show that our approach further improves zero-shot generalization, while offering new insights into integrating robot learning-based depth estimation

    2D-3D Pose Tracking with Multi-View Constraints

    Full text link
    Camera localization in 3D LiDAR maps has gained increasing attention due to its promising ability to handle complex scenarios, surpassing the limitations of visual-only localization methods. However, existing methods mostly focus on addressing the cross-modal gaps, estimating camera poses frame by frame without considering the relationship between adjacent frames, which makes the pose tracking unstable. To alleviate this, we propose to couple the 2D-3D correspondences between adjacent frames using the 2D-2D feature matching, establishing the multi-view geometrical constraints for simultaneously estimating multiple camera poses. Specifically, we propose a new 2D-3D pose tracking framework, which consists: a front-end hybrid flow estimation network for consecutive frames and a back-end pose optimization module. We further design a cross-modal consistency-based loss to incorporate the multi-view constraints during the training and inference process. We evaluate our proposed framework on the KITTI and Argoverse datasets. Experimental results demonstrate its superior performance compared to existing frame-by-frame 2D-3D pose tracking methods and state-of-the-art vision-only pose tracking algorithms. More online pose tracking videos are available at \url{https://youtu.be/yfBRdg7gw5M}Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore