6 research outputs found

    An Orthogonal-SGD based Learning Approach for MIMO Detection under Multiple Channel Models

    Get PDF
    In this paper, an orthogonal stochastic gradient descent (O-SGD) based learning approach is proposed to tackle the wireless channel over-training problem inherent in artificial neural network (ANN)-assisted MIMO signal detection. Our basic idea lies in the discovery and exploitation of the training-sample orthogonality between the current training epoch and past training epochs. Unlike the conventional SGD that updates the neural network simply based upon current training samples, O-SGD discovers the correlation between current training samples and historical training data, and then updates the neural network with those uncorrelated components. The network updating occurs only in those identified null subspaces. By such means, the neural network can understand and memorize uncorrelated components between different wireless channels, and thus is more robust to wireless channel variations. This hypothesis is confirmed through our extensive computer simulations as well as performance comparison with the conventional SGD approach.Comment: 6 pages, 4 figures, conferenc

    A real-time deep learning OFDM receiver

    Get PDF

    Unsupervised Deep Learning for MU-SIMO Joint Transmitter and Noncoherent Receiver Design

    Get PDF
    This work aims to handle the joint transmitter and noncoherent receiver optimization for multiuser single-input multiple-output (MU-SIMO) communications through unsupervised deep learning. It is shown that MU-SIMO can be modeled as a deep neural network with three essential layers, which include a partially-connected linear layer for joint multiuser waveform design at the transmitter side, and two nonlinear layers for the noncoherent signal detection. The proposed approach demonstrates remarkable MU-SIMO noncoherent communication performance in Rayleigh fading channels

    Unsupervised Deep Learning for MU-SIMO Joint Transmitter and Noncoherent Receiver Design

    No full text
    corecore