783 research outputs found

    The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

    Full text link
    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.Comment: Accepted to CVPR 2018; Code and data available at https://www.github.com/richzhang/PerceptualSimilarit

    You said that?

    Full text link
    We present a method for generating a video of a talking face. The method takes as inputs: (i) still images of the target face, and (ii) an audio speech segment; and outputs a video of the target face lip synched with the audio. The method runs in real time and is applicable to faces and audio not seen at training time. To achieve this we propose an encoder-decoder CNN model that uses a joint embedding of the face and audio to generate synthesised talking face video frames. The model is trained on tens of hours of unlabelled videos. We also show results of re-dubbing videos using speech from a different person.Comment: https://youtu.be/LeufDSb15Kc British Machine Vision Conference (BMVC), 201

    Image Manipulation and Image Synthesis

    Get PDF
    Image manipulation is of historic importance. Ever since the advent of photography, pictures have been manipulated for various reasons. Historic rulers often used image manipulation techniques for the purpose of self-portrayal or propaganda. In many cases, the goal is to manipulate human behaviour by spreading credible misinformation. Photographs, by their nature, portray the real world and as such are more credible to humans. However, image manipulation may not only serve evil purposes. In this thesis, we propose and analyse methods for image manipulation that serve a positive purpose. Specifically, we treat image manipulation as a tool for solving other tasks. For this, we model image manipulation as an image-to-image translation (I2I) task, i.e., a system that receives an image as input and outputs a manipulated version of the input. We propose multiple I2I based methods. We demonstrate that I2I based image manipulation methods can be used to reduce motion blur in videos. Second, we show that I2I based image manipulation methods can be used for domain adaptation and domain extension. Specifically, we present a method that significantly improves the learning of semantic segmentation from synthetic source data. The same technique can be applied to learning nighttime semantic segmentation from daylight images. Next, we show that I2I can be used to enable weakly supervised object segmentation. We show that each individual task requires and allows for different levels of supervision during the training of deep models in order to achieve best performance. We discuss the importance of maintaining control over the output of such methods and show that, with reduced levels of supervision, methods for maintaining stability during training and for establishing control over the output of a system become increasingly important. We propose multiple methods that solve the issues that arise in such systems. Finally, we demonstrate that our proposed mechanisms for control can be adapted to synthesise images from scratch
    • …
    corecore