3,405 research outputs found

    Development and Applications of Machine Learning Methods for Hyperspectral Data

    Get PDF
    Die hyperspektrale Fernerkundung der Erde stützt sich auf Daten passiver optischer Sensoren, die auf Plattformen wie Satelliten und unbemannten Luftfahrzeugen montiert sind. Hyperspektrale Daten umfassen Informationen zur Identifizierung von Materialien und zur Überwachung von Umweltvariablen wie Bodentextur, Bodenfeuchte, Chlorophyll a und Landbedeckung. Methoden zur Datenanalyse sind erforderlich, um Informationen aus hyperspektralen Daten zu erhalten. Ein leistungsstarkes Werkzeug bei der Analyse von Hyperspektraldaten ist das Maschinelle Lernen, eine Untergruppe von Künstlicher Intelligenz. Maschinelle Lernverfahren können nichtlineare Korrelationen lösen und sind bei steigenden Datenmengen skalierbar. Jeder Datensatz und jedes maschinelle Lernverfahren bringt neue Herausforderungen mit sich, die innovative Lösungen erfordern. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung von maschinellen Lernverfahren auf hyperspektrale Fernerkundungsdaten. Im Rahmen dieser Arbeit werden Studien vorgestellt, die sich mit drei wesentlichen Herausforderungen befassen: (I) Datensätze, welche nur wenige Datenpunkte mit dazugehörigen Ausgabedaten enthalten, (II) das begrenzte Potential von nicht-tiefen maschinellen Lernverfahren auf hyperspektralen Daten und (III) Unterschiede zwischen den Verteilungen der Trainings- und Testdatensätzen. Die Studien zur Herausforderung (I) führen zur Entwicklung und Veröffentlichung eines Frameworks von Selbstorganisierten Karten (SOMs) für unüberwachtes, überwachtes und teilüberwachtes Lernen. Die SOM wird auf einen hyperspektralen Datensatz in der (teil-)überwachten Regression der Bodenfeuchte angewendet und übertrifft ein Standardverfahren des maschinellen Lernens. Das SOM-Framework zeigt eine angemessene Leistung in der (teil-)überwachten Klassifikation der Landbedeckung. Es bietet zusätzliche Visualisierungsmöglichkeiten, um das Verständnis des zugrunde liegenden Datensatzes zu verbessern. In den Studien, die sich mit Herausforderung (II) befassen, werden drei innovative eindimensionale Convolutional Neural Network (CNN) Architekturen entwickelt. Die CNNs werden für eine Bodentexturklassifikation auf einen frei verfügbaren hyperspektralen Datensatz angewendet. Ihre Leistung wird mit zwei bestehenden CNN-Ansätzen und einem Random Forest verglichen. Die beiden wichtigsten Erkenntnisse lassen sich wie folgt zusammenfassen: Erstens zeigen die CNN-Ansätze eine deutlich bessere Leistung als der angewandte nicht-tiefe Random Forest-Ansatz. Zweitens verbessert das Hinzufügen von Informationen über hyperspektrale Bandnummern zur Eingabeschicht eines CNNs die Leistung im Bezug auf die einzelnen Klassen. Die Studien über die Herausforderung (III) basieren auf einem Datensatz, der auf fünf verschiedenen Messgebieten in Peru im Jahr 2019 erfasst wurde. Die Unterschiede zwischen den Messgebieten werden mit qualitativen Methoden und mit unüberwachten maschinellen Lernverfahren, wie zum Beispiel Principal Component Analysis und Autoencoder, analysiert. Basierend auf den Ergebnissen wird eine überwachte Regression der Bodenfeuchte bei verschiedenen Kombinationen von Messgebieten durchgeführt. Zusätzlich wird der Datensatz mit Monte-Carlo-Methoden ergänzt, um die Auswirkungen der Verschiebung der Verteilungen des Datensatzes auf die Regression zu untersuchen. Der angewandte SOM-Regressor ist relativ robust gegenüber dem Rauschen des Bodenfeuchtesensors und zeigt eine gute Leistung bei kleinen Datensätzen, während der angewandte Random Forest auf dem gesamten Datensatz am besten funktioniert. Die Verschiebung der Verteilungen macht diese Regressionsaufgabe schwierig; einige Kombinationen von Messgebieten bilden einen deutlich sinnvolleren Trainingsdatensatz als andere. Insgesamt zeigen die vorgestellten Studien, die sich mit den drei größten Herausforderungen befassen, vielversprechende Ergebnisse. Die Arbeit gibt schließlich Hinweise darauf, wie die entwickelten maschinellen Lernverfahren in der zukünftigen Forschung weiter verbessert werden können

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A modified kohonen self-organizing map (KSOM) clustering for four categorical data

    Get PDF
    The Kohonen Self-Organizing Map (KSOM) is one of the Neural Network unsupervised learning algorithms. This algorithm is used in solving problems in various areas, especially in clustering complex data sets. Despite its advantages, the KSOM algorithm has a few drawbacks; such as overlapped cluster and non-linear separable problems. Therefore, this paper proposes a modified KSOM that inspired from pheromone approach in Ant Colony Optimization. The modification is focusing on the distance calculation amongst objects. The proposed algorithm has been tested on four real categorical data that are obtained from UCI machine learning repository; Iris, Seeds, Glass and Wisconsin Breast Cancer Database. From the results, it shows that the modified KSOM has produced accurate clustering result and all clusters can clearly be identified

    Integration of geographic information system and RADARSAT synthetic aperture radar data using a self-organizing map network as compensation for realtime ground data in automatic image classification

    Get PDF
    The paper presents results of using advanced techniques such as Self-Organizing feature Map (SOM) to incorporate a GIS data layer to compensate for the limited amount of real-time ground-truth data available for land-use and land-cover mapping in wet-season conditions in Bangladesh based on multi-temporal RADARSAT-1 SAR images. The experimental results were compared with those of traditional statistical classifiers such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance, which are not suitable for incorporating low-level GIS data in the image classification process. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification with respect to the depth and duration of regular flooding was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers at 79.6% where the training data covered only 0.53% of the total image. It also achieved higher accuracies for more classes in comparison to the other classifiers

    Artificial neural networks to detect forest fire prone areas in the southeast fire district of Mississippi

    Get PDF
    An analysis of the fire occurrences parameters is essential to save human lives, property, timber resources and conservation of biodiversity. Data conversion formats such as raster to ASCII facilitate the integration of various GIS software’s in the context of RS and GIS modeling. This research explores fire occurrences in relation to human interaction, fuel density interaction, euclidean distance from the perennial streams and slope using artificial neural networks. The human interaction (ignition source) and density of fuels is assessed by Newton’s Gravitational theory. Euclidean distance to perennial streams and slope that do posses a significant role were derived using GIS tools. All the four non linear predictor variables were modeled using the inductive nature of neural networks. The Self organizing feature map (SOM) utilized for fire size risk classification produced an overall classification accuracy of 62% and an overall kappa coefficient of 0.52 that is moderate (fair) for annual fires

    Automatic Building Change Detection in Wide Area Surveillance

    Get PDF
    We present an automated mechanism that can detect and characterize the building changes by analyzing airborne or satellite imagery. The proposed framework can be categorized into three stages: building detection, boundary extraction and change identification. To detect the buildings, we utilize local phase and local amplitude from monogenic signal to extract building features for addressing issues of varying illumination. Then a support vector machine with Radial basis kernel is used for classification. In the boundary extraction stage, a level-set function with self-organizing map based segmentation method is used to find the building boundary and compute physical area of the building segments. In the last stage, the change of the detected building is identified by computing the area differences of the same building that captured at different times. The experiments are conducted on a set of real-life aerial imagery to show the effectiveness of the proposed method
    corecore