2,827 research outputs found

    PerfWeb: How to Violate Web Privacy with Hardware Performance Events

    Full text link
    The browser history reveals highly sensitive information about users, such as financial status, health conditions, or political views. Private browsing modes and anonymity networks are consequently important tools to preserve the privacy not only of regular users but in particular of whistleblowers and dissidents. Yet, in this work we show how a malicious application can infer opened websites from Google Chrome in Incognito mode and from Tor Browser by exploiting hardware performance events (HPEs). In particular, we analyze the browsers' microarchitectural footprint with the help of advanced Machine Learning techniques: k-th Nearest Neighbors, Decision Trees, Support Vector Machines, and in contrast to previous literature also Convolutional Neural Networks. We profile 40 different websites, 30 of the top Alexa sites and 10 whistleblowing portals, on two machines featuring an Intel and an ARM processor. By monitoring retired instructions, cache accesses, and bus cycles for at most 5 seconds, we manage to classify the selected websites with a success rate of up to 86.3%. The results show that hardware performance events can clearly undermine the privacy of web users. We therefore propose mitigation strategies that impede our attacks and still allow legitimate use of HPEs

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Costing JIT Traces

    Get PDF
    Tracing JIT compilation generates units of compilation that are easy to analyse and are known to execute frequently. The AJITPar project aims to investigate whether the information in JIT traces can be used to make better scheduling decisions or perform code transformations to adapt the code for a specific parallel architecture. To achieve this goal, a cost model must be developed to estimate the execution time of an individual trace. This paper presents the design and implementation of a system for extracting JIT trace information from the Pycket JIT compiler. We define three increasingly parametric cost models for Pycket traces. We perform a search of the cost model parameter space using genetic algorithms to identify the best weightings for those parameters. We test the accuracy of these cost models for predicting the cost of individual traces on a set of loop-based micro-benchmarks. We also compare the accuracy of the cost models for predicting whole program execution time over the Pycket benchmark suite. Our results show that the weighted cost model using the weightings found from the genetic algorithm search has the best accuracy

    MoonGen: A Scriptable High-Speed Packet Generator

    Full text link
    We present MoonGen, a flexible high-speed packet generator. It can saturate 10 GbE links with minimum sized packets using only a single CPU core by running on top of the packet processing framework DPDK. Linear multi-core scaling allows for even higher rates: We have tested MoonGen with up to 178.5 Mpps at 120 Gbit/s. We move the whole packet generation logic into user-controlled Lua scripts to achieve the highest possible flexibility. In addition, we utilize hardware features of Intel NICs that have not been used for packet generators previously. A key feature is the measurement of latency with sub-microsecond precision and accuracy by using hardware timestamping capabilities of modern commodity NICs. We address timing issues with software-based packet generators and apply methods to mitigate them with both hardware support on commodity NICs and with a novel method to control the inter-packet gap in software. Features that were previously only possible with hardware-based solutions are now provided by MoonGen on commodity hardware. MoonGen is available as free software under the MIT license at https://github.com/emmericp/MoonGenComment: Published at IMC 201

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table
    corecore