3 research outputs found

    Unpaired High-Resolution and Scalable Style Transfer Using Generative Adversarial Networks

    Full text link
    Neural networks have proven their capabilities by outperforming many other approaches on regression or classification tasks on various kinds of data. Other astonishing results have been achieved using neural nets as data generators, especially in settings of generative adversarial networks (GANs). One special application is the field of image domain translations. Here, the goal is to take an image with a certain style (e.g. a photography) and transform it into another one (e.g. a painting). If such a task is performed for unpaired training examples, the corresponding GAN setting is complex, the neural networks are large, and this leads to a high peak memory consumption during, both, training and evaluation phase. This sets a limit to the highest processable image size. We address this issue by the idea of not processing the whole image at once, but to train and evaluate the domain translation on the level of overlapping image subsamples. This new approach not only enables us to translate high-resolution images that otherwise cannot be processed by the neural network at once, but also allows us to work with comparably small neural networks and with limited hardware resources. Additionally, the number of images required for the training process is significantly reduced. We present high-quality results on images with a total resolution of up to over 50 megapixels and emonstrate that our method helps to preserve local image details while it also keeps global consistency.Comment: 10 pages, 8 figure

    Collaborative Distillation for Ultra-Resolution Universal Style Transfer

    Full text link
    Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution images given limited memory. In this work, we present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer to reduce the convolutional filters. The main idea is underpinned by a finding that the encoder-decoder pairs construct an exclusive collaborative relationship, which is regarded as a new kind of knowledge for style transfer models. Moreover, to overcome the feature size mismatch when applying collaborative distillation, a linear embedding loss is introduced to drive the student network to learn a linear embedding of the teacher's features. Extensive experiments show the effectiveness of our method when applied to different universal style transfer approaches (WCT and AdaIN), even if the model size is reduced by 15.5 times. Especially, on WCT with the compressed models, we achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time. Further experiments on optimization-based stylization scheme show the generality of our algorithm on different stylization paradigms. Our code and trained models are available at https://github.com/mingsun-tse/collaborative-distillation.Comment: Accepted by CVPR 2020, higher-resolution images than the camera-ready versio

    Rethinking conditional GAN training: An approach using geometrically structured latent manifolds

    Full text link
    Conditional GANs (cGAN), in their rudimentary form, suffer from critical drawbacks such as the lack of diversity in generated outputs and distortion between the latent and output manifolds. Although efforts have been made to improve results, they can suffer from unpleasant side-effects such as the topology mismatch between latent and output spaces. In contrast, we tackle this problem from a geometrical perspective and propose a novel training mechanism that increases both the diversity and the visual quality of a vanilla cGAN, by systematically encouraging a bi-lipschitz mapping between the latent and the output manifolds. We validate the efficacy of our solution on a baseline cGAN (i.e., Pix2Pix) which lacks diversity, and show that by only modifying its training mechanism (i.e., with our proposed Pix2Pix-Geo), one can achieve more diverse and realistic outputs on a broad set of image-to-image translation tasks. Codes are available at https://github.com/samgregoost/Rethinking-CGANs
    corecore