20,663 research outputs found
Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing
In hyperspectral images, some spectral bands suffer from low signal-to-noise
ratio due to noisy acquisition and atmospheric effects, thus requiring robust
techniques for the unmixing problem. This paper presents a robust supervised
spectral unmixing approach for hyperspectral images. The robustness is achieved
by writing the unmixing problem as the maximization of the correntropy
criterion subject to the most commonly used constraints. Two unmixing problems
are derived: the first problem considers the fully-constrained unmixing, with
both the non-negativity and sum-to-one constraints, while the second one deals
with the non-negativity and the sparsity-promoting of the abundances. The
corresponding optimization problems are solved efficiently using an alternating
direction method of multipliers (ADMM) approach. Experiments on synthetic and
real hyperspectral images validate the performance of the proposed algorithms
for different scenarios, demonstrating that the correntropy-based unmixing is
robust to outlier bands.Comment: 23 page
Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
Imaging spectrometers measure electromagnetic energy scattered in their
instantaneous field view in hundreds or thousands of spectral channels with
higher spectral resolution than multispectral cameras. Imaging spectrometers
are therefore often referred to as hyperspectral cameras (HSCs). Higher
spectral resolution enables material identification via spectroscopic analysis,
which facilitates countless applications that require identifying materials in
scenarios unsuitable for classical spectroscopic analysis. Due to low spatial
resolution of HSCs, microscopic material mixing, and multiple scattering,
spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus,
accurate estimation requires unmixing. Pixels are assumed to be mixtures of a
few materials, called endmembers. Unmixing involves estimating all or some of:
the number of endmembers, their spectral signatures, and their abundances at
each pixel. Unmixing is a challenging, ill-posed inverse problem because of
model inaccuracies, observation noise, environmental conditions, endmember
variability, and data set size. Researchers have devised and investigated many
models searching for robust, stable, tractable, and accurate unmixing
algorithms. This paper presents an overview of unmixing methods from the time
of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models
are first discussed. Signal-subspace, geometrical, statistical, sparsity-based,
and spatial-contextual unmixing algorithms are described. Mathematical problems
and potential solutions are described. Algorithm characteristics are
illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensin
Distributed Unmixing of Hyperspectral Data With Sparsity Constraint
Spectral unmixing (SU) is a data processing problem in hyperspectral remote
sensing. The significant challenge in the SU problem is how to identify
endmembers and their weights, accurately. For estimation of signature and
fractional abundance matrices in a blind problem, nonnegative matrix
factorization (NMF) and its developments are used widely in the SU problem. One
of the constraints which was added to NMF is sparsity constraint that was
regularized by L 1/2 norm. In this paper, a new algorithm based on distributed
optimization has been used for spectral unmixing. In the proposed algorithm, a
network including single-node clusters has been employed. Each pixel in
hyperspectral images considered as a node in this network. The distributed
unmixing with sparsity constraint has been optimized with diffusion LMS
strategy, and then the update equations for fractional abundance and signature
matrices are obtained. Simulation results based on defined performance metrics,
illustrate advantage of the proposed algorithm in spectral unmixing of
hyperspectral data compared with other methods. The results show that the AAD
and SAD of the proposed approach are improved respectively about 6 and 27
percent toward distributed unmixing in SNR=25dB.Comment: 6 pages, conference pape
Unmixing of Hyperspectral Data Using Robust Statistics-based NMF
Mixed pixels are presented in hyperspectral images due to low spatial
resolution of hyperspectral sensors. Spectral unmixing decomposes mixed pixels
spectra into endmembers spectra and abundance fractions. In this paper using of
robust statistics-based nonnegative matrix factorization (RNMF) for spectral
unmixing of hyperspectral data is investigated. RNMF uses a robust cost
function and iterative updating procedure, so is not sensitive to outliers.
This method has been applied to simulated data using USGS spectral library,
AVIRIS and ROSIS datasets. Unmixing results are compared to traditional NMF
method based on SAD and AAD measures. Results demonstrate that this method can
be used efficiently for hyperspectral unmixing purposes.Comment: 4 pages, conferenc
On asymptotics of ICA estimators and their performance indices
Independent component analysis (ICA) has become a popular multivariate
analysis and signal processing technique with diverse applications. This paper
is targeted at discussing theoretical large sample properties of ICA unmixing
matrix functionals. We provide a formal definition of unmixing matrix
functional and consider two popular estimators in detail: the family based on
two scatter matrices with the independence property (e.g., FOBI estimator) and
the family of deflation-based fastICA estimators. The limiting behavior of the
corresponding estimates is discussed and the asymptotic normality of the
deflation-based fastICA estimate is proven under general assumptions.
Furthermore, properties of several performance indices commonly used for
comparison of different unmixing matrix estimates are discussed and a new
performance index is proposed. The proposed index fullfills three desirable
features which promote its use in practice and distinguish it from others.
Namely, the index possesses an easy interpretation, is fast to compute and its
asymptotic properties can be inferred from asymptotics of the unmixing matrix
estimate. We illustrate the derived asymptotical results and the use of the
proposed index with a small simulation study
A Multiple Hypothesis Testing Approach to Low-Complexity Subspace Unmixing
Subspace-based signal processing traditionally focuses on problems involving
a few subspaces. Recently, a number of problems in different application areas
have emerged that involve a significantly larger number of subspaces relative
to the ambient dimension. It becomes imperative in such settings to first
identify a smaller set of active subspaces that contribute to the observation
before further processing can be carried out. This problem of identification of
a small set of active subspaces among a huge collection of subspaces from a
single (noisy) observation in the ambient space is termed subspace unmixing.
This paper formally poses the subspace unmixing problem under the parsimonious
subspace-sum (PS3) model, discusses connections of the PS3 model to problems in
wireless communications, hyperspectral imaging, high-dimensional statistics and
compressed sensing, and proposes a low-complexity algorithm, termed marginal
subspace detection (MSD), for subspace unmixing. The MSD algorithm turns the
subspace unmixing problem for the PS3 model into a multiple hypothesis testing
(MHT) problem and its analysis in the paper helps control the family-wise error
rate of this MHT problem at any level under two random
signal generation models. Some other highlights of the analysis of the MSD
algorithm include: (i) it is applicable to an arbitrary collection of subspaces
on the Grassmann manifold; (ii) it relies on properties of the collection of
subspaces that are computable in polynomial time; and () it allows for
linear scaling of the number of active subspaces as a function of the ambient
dimension. Finally, numerical results are presented in the paper to better
understand the performance of the MSD algorithm.Comment: Submitted for journal publication; 33 pages, 14 figure
Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral image
Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the spectral signatures while abundances are estimated using an inversion step. Recent works have shown that exploiting spatial dependencies between image pixels can improve spectral unmixing. Markov random fields (MRF) are classically used to model these spatial correlations and partition the image into multiple classes with homogeneous abundances. This paper proposes to define the MRF sites using similarity regions. These regions are built using a self-complementary area filter that stems from the morphological theory. This kind of filter divides the original image into flat zones where the underlying pixels have the same spectral values. Once the MRF has been clearly established, a hierarchical Bayesian algorithm is proposed to estimate the abundances, the class labels, the noise variance, and the corresponding hyperparameters. A hybrid Gibbs sampler is constructed to generate samples according to the corresponding posterior distribution of the unknown parameters and hyperparameters. Simulations conducted on synthetic and real AVIRIS data demonstrate the good performance of the algorithm
- …
