16 research outputs found

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie

    Time Encoding via Unlimited Sampling: Theory, Algorithms and Hardware Validation

    Full text link
    An alternative to conventional uniform sampling is that of time encoding, which converts continuous-time signals into streams of trigger times. This gives rise to Event-Driven Sampling (EDS) models. The data-driven nature of EDS acquisition is advantageous in terms of power consumption and time resolution and is inspired by the information representation in biological nervous systems. If an analog signal is outside a predefined dynamic range, then EDS generates a low density of trigger times, which in turn leads to recovery distortion due to aliasing. In this paper, inspired by the Unlimited Sensing Framework (USF), we propose a new EDS architecture that incorporates a modulo nonlinearity prior to acquisition that we refer to as the modulo EDS or MEDS. In MEDS, the modulo nonlinearity folds high dynamic range inputs into low dynamic range amplitudes, thus avoiding recovery distortion. In particular, we consider the asynchronous sigma-delta modulator (ASDM), previously used for low power analog-to-digital conversion. This novel MEDS based acquisition is enabled by a recent generalization of the modulo nonlinearity called modulo-hysteresis. We design a mathematically guaranteed recovery algorithm for bandlimited inputs based on a sampling rate criterion and provide reconstruction error bounds. We go beyond numerical experiments and also provide a first hardware validation of our approach, thus bridging the gap between theory and practice, while corroborating the conceptual underpinnings of our work.Comment: 27 pgs, 11 figures, IEEE Trans. Sig. Proc., accepted with minor revision

    A Modulo-Based Architecture for Analog-to-Digital Conversion

    Full text link
    Systems that capture and process analog signals must first acquire them through an analog-to-digital converter. While subsequent digital processing can remove statistical correlations present in the acquired data, the dynamic range of the converter is typically scaled to match that of the input analog signal. The present paper develops an approach for analog-to-digital conversion that aims at minimizing the number of bits per sample at the output of the converter. This is attained by reducing the dynamic range of the analog signal by performing a modulo operation on its amplitude, and then quantizing the result. While the converter itself is universal and agnostic of the statistics of the signal, the decoder operation on the output of the quantizer can exploit the statistical structure in order to unwrap the modulo folding. The performance of this method is shown to approach information theoretical limits, as captured by the rate-distortion function, in various settings. An architecture for modulo analog-to-digital conversion via ring oscillators is suggested, and its merits are numerically demonstrated

    Denoising modulo samples: k-NN regression and tightness of SDP relaxation

    Get PDF
    Many modern applications involve the acquisition of noisy modulo samples of a function ff, with the goal being to recover estimates of the original samples of ff. For a Lipschitz function f:[0,1]dRf:[0,1]^d \to \mathbb{R}, suppose we are given the samples yi=(f(xi)+ηi)mod1;i=1,,ny_i = (f(x_i) + \eta_i)\bmod 1; \quad i=1,\dots,n where ηi\eta_i denotes noise. Assuming ηi\eta_i are zero-mean i.i.d Gaussian's, and xix_i's form a uniform grid, we derive a two-stage algorithm that recovers estimates of the samples f(xi)f(x_i) with a uniform error rate O((lognn)1d+2)O((\frac{\log n}{n})^{\frac{1}{d+2}}) holding with high probability. The first stage involves embedding the points on the unit complex circle, and obtaining denoised estimates of f(xi)mod1f(x_i)\bmod 1 via a kkNN (nearest neighbor) estimator. The second stage involves a sequential unwrapping procedure which unwraps the denoised mod 11 estimates from the first stage. Recently, Cucuringu and Tyagi proposed an alternative way of denoising modulo 11 data which works with their representation on the unit complex circle. They formulated a smoothness regularized least squares problem on the product manifold of unit circles, where the smoothness is measured with respect to the Laplacian of a proximity graph GG involving the xix_i's. This is a nonconvex quadratically constrained quadratic program (QCQP) hence they proposed solving its semidefinite program (SDP) based relaxation. We derive sufficient conditions under which the SDP is a tight relaxation of the QCQP. Hence under these conditions, the global solution of QCQP can be obtained in polynomial time.Comment: 34 pages, 6 figure

    Error analysis for denoising smooth modulo signals on a graph

    Get PDF
    In many applications, we are given access to noisy modulo samples of a smooth function with the goal being to robustly unwrap the samples, i.e., to estimate the original samples of the function. In a recent work, Cucuringu and Tyagi proposed denoising the modulo samples by first representing them on the unit complex circle and then solving a smoothness regularized least squares problem -- the smoothness measured w.r.t the Laplacian of a suitable proximity graph GG -- on the product manifold of unit circles. This problem is a quadratically constrained quadratic program (QCQP) which is nonconvex, hence they proposed solving its sphere-relaxation leading to a trust region subproblem (TRS). In terms of theoretical guarantees, 2\ell_2 error bounds were derived for (TRS). These bounds are however weak in general and do not really demonstrate the denoising performed by (TRS). In this work, we analyse the (TRS) as well as an unconstrained relaxation of (QCQP). For both these estimators we provide a refined analysis in the setting of Gaussian noise and derive noise regimes where they provably denoise the modulo observations w.r.t the 2\ell_2 norm. The analysis is performed in a general setting where GG is any connected graph.Comment: 36 pages, 2 figures. Added Section 5 (Simulations) and made minor changes as per reviewers comment
    corecore