27 research outputs found

    AI-generated Content for Various Data Modalities: A Survey

    Full text link
    AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions

    Domain Generalization in Computational Pathology: Survey and Guidelines

    Full text link
    Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications. Nevertheless, the presence of out-of-distribution data (stemming from a multitude of sources such as disparate imaging devices and diverse tissue preparation methods) can cause \emph{domain shift} (DS). DS decreases the generalization of trained models to unseen datasets with slightly different data distributions, prompting the need for innovative \emph{domain generalization} (DG) solutions. Recognizing the potential of DG methods to significantly influence diagnostic and prognostic models in cancer studies and clinical practice, we present this survey along with guidelines on achieving DG in CPath. We rigorously define various DS types, systematically review and categorize existing DG approaches and resources in CPath, and provide insights into their advantages, limitations, and applicability. We also conduct thorough benchmarking experiments with 28 cutting-edge DG algorithms to address a complex DG problem. Our findings suggest that careful experiment design and CPath-specific Stain Augmentation technique can be very effective. However, there is no one-size-fits-all solution for DG in CPath. Therefore, we establish clear guidelines for detecting and managing DS depending on different scenarios. While most of the concepts, guidelines, and recommendations are given for applications in CPath, we believe that they are applicable to most medical image analysis tasks as well.Comment: Extended Versio

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    Analytics over Encrypted Traffic and Defenses

    Get PDF
    Encrypted traffic flows have been known to leak information about their underlying content through statistical properties such as packet lengths and timing. While traffic fingerprinting attacks exploit such information leaks and threaten user privacy by disclosing website visits, videos streamed, and user activity on messaging platforms, they can also be helpful in network management and intelligence services. Most recent and best-performing such attacks are based on deep learning models. In this thesis, we identify multiple limitations in the currently available attacks and defenses against them. First, these deep learning models do not provide any insights into their decision-making process. Second, most attacks that have achieved very high accuracies are still limited by unrealistic assumptions that affect their practicality. For example, most attacks assume a closed world setting and focus on traffic classification after event completion. Finally, current state-of-the-art defenses still incur high overheads to provide reasonable privacy, which limits their applicability in real-world applications. In order to address these limitations, we first propose an inline traffic fingerprinting attack based on variable-length sequence modeling to facilitate real-time analytics. Next, we attempt to understand the inner workings of deep learning-based attacks with the dual goals of further improving attacks and designing efficient defenses against such attacks. Then, based on the observations from this analysis, we propose two novel defenses against traffic fingerprinting attacks that provide privacy under more realistic constraints and at lower bandwidth overheads. Finally, we propose a robust framework for open set classification that targets network traffic with this added advantage of being more suitable for deployment in resource-constrained in-network devices

    Introduction: Ways of Machine Seeing

    Get PDF
    How do machines, and, in particular, computational technologies, change the way we see the world? This special issue brings together researchers from a wide range of disciplines to explore the entanglement of machines and their ways of seeing from new critical perspectives. This 'editorial' is for a special issue of AI & Society, which includes contributions from: María Jesús Schultz Abarca, Peter Bell, Tobias Blanke, Benjamin Bratton, Claudio Celis Bueno, Kate Crawford, Iain Emsley, Abelardo Gil-Fournier, Daniel Chávez Heras, Vladan Joler, Nicolas Malevé, Lev Manovich, Nicholas Mirzoeff, Perle Møhl, Bruno Moreschi, Fabian Offert, Trevor Paglan, Jussi Parikka, Luciana Parisi, Matteo Pasquinelli, Gabriel Pereira, Carloalberto Treccani, Rebecca Uliasz, and Manuel van der Veen

    Methods towards precision bioinformatics in single cell era

    Get PDF
    Single-cell technology offers unprecedented insight into the molecular landscape of individual cell and is transforming precision medicine. Key to the effective use of single-cell data for disease understanding is the analysis of such information through bioinformatics methods. In this thesis, we examine and address several challenges in single-cell bioinformatics methods for precision medicine. While most of current single-cell analytical tools employ statistical and machine learning methods, deep learning technology has gained tremendous success in computer science. Combined with ensemble learning, this further improve model performance. Through a review article (Cao et al., 2020), we share recent key developments in this area and their contribution to bioinformatics research. Bioinformatics tools often use simulation data to assess proposed methodologies, but evaluation of the quality of single-cell RNA-sequencing (scRNA-seq) data simulation tools is lacking. We develop a comprehensive framework, SimBench (Cao et al., 2021), that examines a range of aspects from data properties to the ability to maintain biological signals, scalability, and applicability. While individual patient understanding is the key to precision medicine, there is little consensus on the best ways to compress complex single-cell data into summary statistics that represent each individual. We present scFeatures (Cao et al., 2022b), an approach that creates interpretable molecular representations for individuals. Finally, in a case study using multiple COVID-19 scRNA-seq data, we utilise scFeatures to generate molecular characterisations of individuals and illustrate the impact of ensemble learning and deep learning on improving disease outcome prediction. Overall, this thesis addresses several gaps in precision bioinformatics in the single-cell field by highlighting research advances, developing methodologies, and illustrating practical uses through experimental datasets and case studies

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective

    Applications and Techniques for Fast Machine Learning in Science

    Get PDF
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs
    corecore