2 research outputs found

    Dual Encoding for Zero-Example Video Retrieval

    Full text link
    This paper attacks the challenging problem of zero-example video retrieval. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described in natural language text with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is required. The majority of existing methods are concept based, extracting relevant concepts from queries and videos and accordingly establishing associations between the two modalities. In contrast, this paper takes a concept-free approach, proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Dual encoding is conceptually simple, practically effective and end-to-end. As experiments on three benchmarks, i.e. MSR-VTT, TRECVID 2016 and 2017 Ad-hoc Video Search show, the proposed solution establishes a new state-of-the-art for zero-example video retrieval.Comment: Accepted by CVPR 2019. Code and data are available at https://github.com/danieljf24/dual_encodin

    SEA: Sentence Encoder Assembly for Video Retrieval by Textual Queries

    Full text link
    Retrieving unlabeled videos by textual queries, known as Ad-hoc Video Search (AVS), is a core theme in multimedia data management and retrieval. The success of AVS counts on cross-modal representation learning that encodes both query sentences and videos into common spaces for semantic similarity computation. Inspired by the initial success of previously few works in combining multiple sentence encoders, this paper takes a step forward by developing a new and general method for effectively exploiting diverse sentence encoders. The novelty of the proposed method, which we term Sentence Encoder Assembly (SEA), is two-fold. First, different from prior art that use only a single common space, SEA supports text-video matching in multiple encoder-specific common spaces. Such a property prevents the matching from being dominated by a specific encoder that produces an encoding vector much longer than other encoders. Second, in order to explore complementarities among the individual common spaces, we propose multi-space multi-loss learning. As extensive experiments on four benchmarks (MSR-VTT, TRECVID AVS 2016-2019, TGIF and MSVD) show, SEA surpasses the state-of-the-art. In addition, SEA is extremely ease to implement. All this makes SEA an appealing solution for AVS and promising for continuously advancing the task by harvesting new sentence encoders.Comment: accepted for publication as a REGULAR paper in the IEEE Transactions on Multimedi
    corecore