60,134 research outputs found

    B2C Mass Customization in the Classroom

    Get PDF
    The purpose of this article is to describe an internet-based mass customization assignment in Operations Management/Supply Chain Management classes where students utilize the Web site of a company that offers a customized product. Students evaluate the user interface, judge the value proposition of the product they demonstrate, and discuss issues of product design, process design and scheduling, inventory management, Supply Chain Management, marketing, and competitors. The students learn about mass customization from both the producer\u27s perspective and the consumer\u27s perspective. Through their own research and the class presentations students are able to develop a better understanding of the implementation requirements and challenges of mass customization. The assignment is highly interactive and has been successfully used in Operations Management and Supply Chain Management courses at under-graduate and graduate levels and at multiple universities. In addition, practitioners interested in implementing a mass customization process can use the assignment as a brainstorming or benchmarking exercise

    Digital Dissemination Platform of Transportation Engineering Education Materials Founded in Adoption Research

    Get PDF
    INE/AUTC 14.0

    Counselors as Advocates: Effects of a Pilot Project Designed to Develop Advocacy Knowledge and Confidence in Trainees

    Get PDF
    While there has been increased attention to advocacy within counseling and counseling psychology, it has been noted that trainees generally feel unprepared to engage in advocacy and do not participant e in this type of work to a large extent, even with increased age or professional experience). The qualitative study summarizes the findings of a project within a graduate multicultural counseling course designed to increase trainee knowledge and confidence related to advocacy. This project required students (N = 19) to complete individual advocacy projects in the community, with opportunities for self-reflection and evaluation of their progress throughout the semester. Student reflection responses about the effects of this project were analyzed using methods from Grounded Theory by a collaborative research team. This process resulted in a core category of responses that included expanded definitions of advocacy, increased self-confidence regarding advocacy work, obstacles encountered, and reactions to the course assignment. Implications and future directions are discussed

    Peachy Parallel Assignments (EduHPC 2018)

    Get PDF
    Peachy Parallel Assignments are a resource for instructors teaching parallel and distributed programming. These are high-quality assignments, previously tested in class, that are readily adoptable. This collection of assignments includes implementing a subset of OpenMP using pthreads, creating an animated fractal, image processing using histogram equalization, simulating a storm of high-energy particles, and solving the wave equation in a variety of settings. All of these come with sample assignment sheets and the necessary starter code.Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Facilitar la inclusión de ejercicios prácticos de programación paralela en cursos de Computación Paralela o de alto rendimiento (HPC)Comunicación en congreso: Descripción de ejercicios prácticos con acceso a material ya desarrollado y probado

    Carle Place Union Free School District and Carle Place Teachers Association (2003)

    Get PDF

    A Flipped Classroom Redesign in General Chemistry

    Get PDF
    The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course (J. Chem. Educ., 2016, 93, 13–23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while keeping discussion sizes small (i.e.,students), and maintaining equivalent contact hour load for faculty and workload for students. To that end, the course format featured lecture contact pushed outside of the classroom in the form of video lectures (mean duration 13 minutes) paired with online homework sets, and three parallel weekly one-hour discussion sections were held in adjoining lab rooms immediately prior to the three-hour laboratory session. As in our previous design, the discussion sections were led by teaching assistants; however, the weekly discussion meeting was shortened from 75 minutes to 50 minutes, and the primary instructor “floated” between the three parallel sessions. Two such sessions were held each week, affording a possible enrollment of 144; initial enrollment was 141, with students self-selecting into the course. We examine student performance in and satisfaction with the course using: (1) a pre-test/post-test design based on the paired questions American Chemical Society (ACS) first-term and second-term exams, (2) data on DFW (D, F, withdrawal) rates, and (3) student evaluations
    corecore