1,201 research outputs found

    Universality of Bayesian mixture predictors

    Full text link
    The problem is that of sequential probability forecasting for finite-valued time series. The data is generated by an unknown probability distribution over the space of all one-way infinite sequences. It is known that this measure belongs to a given set C, but the latter is completely arbitrary (uncountably infinite, without any structure given). The performance is measured with asymptotic average log loss. In this work it is shown that the minimax asymptotic performance is always attainable, and it is attained by a convex combination of a countably many measures from the set C (a Bayesian mixture). This was previously only known for the case when the best achievable asymptotic error is 0. This also contrasts previous results that show that in the non-realizable case all Bayesian mixtures may be suboptimal, while there is a predictor that achieves the optimal performance

    Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees

    Full text link
    We propose a novel nonparametric online predictor for discrete labels conditioned on multivariate continuous features. The predictor is based on a feature space discretization induced by a full-fledged k-d tree with randomly picked directions and a recursive Bayesian distribution, which allows to automatically learn the most relevant feature scales characterizing the conditional distribution. We prove its pointwise universality, i.e., it achieves a normalized log loss performance asymptotically as good as the true conditional entropy of the labels given the features. The time complexity to process the nn-th sample point is O(logn)O(\log n) in probability with respect to the distribution generating the data points, whereas other exact nonparametric methods require to process all past observations. Experiments on challenging datasets show the computational and statistical efficiency of our algorithm in comparison to standard and state-of-the-art methods.Comment: Camera-ready version published in NeurIPS 201

    Universal Prediction

    Get PDF
    In this thesis I investigate the theoretical possibility of a universal method of prediction. A prediction method is universal if it is always able to learn from data: if it is always able to extrapolate given data about past observations to maximally successful predictions about future observations. The context of this investigation is the broader philosophical question into the possibility of a formal specification of inductive or scientific reasoning, a question that also relates to modern-day speculation about a fully automatized data-driven science. I investigate, in particular, a proposed definition of a universal prediction method that goes back to Solomonoff (1964) and Levin (1970). This definition marks the birth of the theory of Kolmogorov complexity, and has a direct line to the information-theoretic approach in modern machine learning. Solomonoff's work was inspired by Carnap's program of inductive logic, and the more precise definition due to Levin can be seen as an explicit attempt to escape the diagonal argument that Putnam (1963) famously launched against the feasibility of Carnap's program. The Solomonoff-Levin definition essentially aims at a mixture of all possible prediction algorithms. An alternative interpretation is that the definition formalizes the idea that learning from data is equivalent to compressing data. In this guise, the definition is often presented as an implementation and even as a justification of Occam's razor, the principle that we should look for simple explanations. The conclusions of my investigation are negative. I show that the Solomonoff-Levin definition fails to unite two necessary conditions to count as a universal prediction method, as turns out be entailed by Putnam's original argument after all; and I argue that this indeed shows that no definition can. Moreover, I show that the suggested justification of Occam's razor does not work, and I argue that the relevant notion of simplicity as compressibility is already problematic itself

    Universal Prediction

    Get PDF
    In this dissertation I investigate the theoretical possibility of a universal method of prediction. A prediction method is universal if it is always able to learn what there is to learn from data: if it is always able to extrapolate given data about past observations to maximally successful predictions about future observations. The context of this investigation is the broader philosophical question into the possibility of a formal specification of inductive or scientific reasoning, a question that also touches on modern-day speculation about a fully automatized data-driven science. I investigate, in particular, a specific mathematical definition of a universal prediction method, that goes back to the early days of artificial intelligence and that has a direct line to modern developments in machine learning. This definition essentially aims to combine all possible prediction algorithms. An alternative interpretation is that this definition formalizes the idea that learning from data is equivalent to compressing data. In this guise, the definition is often presented as an implementation and even as a justification of Occam's razor, the principle that we should look for simple explanations. The conclusions of my investigation are negative. I show that the proposed definition cannot be interpreted as a universal prediction method, as turns out to be exposed by a mathematical argument that it was actually intended to overcome. Moreover, I show that the suggested justification of Occam's razor does not work, and I argue that the relevant notion of simplicity as compressibility is problematic itself

    Universal Prediction:A Philosophical Investigation

    Get PDF

    Cross-National Logo Evaluation Analysis: An Individual Level Approach

    Get PDF
    The universality of design perception and response is tested using data collected from ten countries: Argentina, Australia, China, Germany, Great Britain, India, the Netherlands, Russia, Singapore, and the United States. A Bayesian, finite-mixture, structural-equation model is developed that identifies latent logo clusters while accounting for heterogeneity in evaluations. The concomitant variable approach allows cluster probabilities to be country specific. Rather than a priori defined clusters, our procedure provides a posteriori cross-national logo clusters based on consumer response similarity. To compare the a posteriori cross-national logo clusters, our approach is integrated with Steenkamp and Baumgartner’s (1998) measurement invariance methodology. Our model reduces the ten countries to three cross-national clusters that respond differently to logo design dimensions: the West, Asia, and Russia. The dimensions underlying design are found to be similar across countries, suggesting that elaborateness, naturalness, and harmony are universal design dimensions. Responses (affect, shared meaning, subjective familiarity, and true and false recognition) to logo design dimensions (elaborateness, naturalness, and harmony) and elements (repetition, proportion, and parallelism) are also relatively consistent, although we find minor differences across clusters. Our results suggest that managers can implement a global logo strategy, but they also can optimize logos for specific countries if desired.adaptation;standardization;Bayesian;international marketing;design;Gibbs sampling;concomitant variable;logos;mixture models;structural equation models

    Sequential Predictions based on Algorithmic Complexity

    Get PDF
    This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's universal prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is known about the closeness of their posteriors, which are the important quantities for prediction. We show that for deterministic computable environments, the "posterior" and losses of m converge, but rapid convergence could only be shown on-sequence; the off-sequence convergence can be slow. In probabilistic environments, neither the posterior nor the losses converge, in general.Comment: 26 pages, LaTe
    corecore