1,416 research outputs found

    Universality in Two-Dimensional Enhancement Percolation

    Full text link
    We consider a type of dependent percolation introduced by Aizenman and Grimmett, who showed that certain "enhancements" of independent (Bernoulli) percolation, called essential, make the percolation critical probability strictly smaller. In this paper we first prove that, for two-dimensional enhancements with a natural monotonicity property, being essential is also a necessary condition to shift the critical point. We then show that (some) critical exponents and the scaling limit of crossing probabilities of a two-dimensional percolation process are unchanged if the process is subjected to a monotonic enhancement that is not essential. This proves a form of universality for all dependent percolation models obtained via a monotonic enhancement (of Bernoulli percolation) that does not shift the critical point. For the case of site percolation on the triangular lattice, we also prove a stronger form of universality by showing that the full scaling limit is not affected by any monotonic enhancement that does not shift the critical point.Comment: 36 pages, 4 figure

    Scaling Limit and Critical Exponents for Two-Dimensional Bootstrap Percolation

    Get PDF
    Consider a cellular automaton with state space {0,1}Z2\{0,1 \}^{{\mathbb Z}^2} where the initial configuration ω0\omega_0 is chosen according to a Bernoulli product measure, 1's are stable, and 0's become 1's if they are surrounded by at least three neighboring 1's. In this paper we show that the configuration ωn\omega_n at time n converges exponentially fast to a final configuration ωˉ\bar\omega, and that the limiting measure corresponding to ωˉ\bar\omega is in the universality class of Bernoulli (independent) percolation. More precisely, assuming the existence of the critical exponents β\beta, η\eta, ν\nu and γ\gamma, and of the continuum scaling limit of crossing probabilities for independent site percolation on the close-packed version of Z2{\mathbb Z}^2 (i.e., for independent ∗*-percolation on Z2{\mathbb Z}^2), we prove that the bootstrapped percolation model has the same scaling limit and critical exponents. This type of bootstrap percolation can be seen as a paradigm for a class of cellular automata whose evolution is given, at each time step, by a monotonic and nonessential enhancement.Comment: 15 page

    Quantum disorder and Griffiths singularities in bond-diluted two-dimensional Heisenberg antiferromagnets

    Full text link
    We investigate quantum phase transitions in the spin-1/2 Heisenberg antiferromagnet on square lattices with inhomogeneous bond dilution. It is shown that quantum fluctuations can be continuously tuned by inhomogeneous bond dilution, eventually leading to the destruction of long-range magnetic order on the percolating cluster. Two multicritical points are identified at which the magnetic transition separates from the percolation transition, introducing a novel quantum phase transition. Beyond these multicritical points a quantum-disordered phase appears, characterized by an infinite percolating cluster with short ranged antiferromagnetic order. In this phase, the low-temperature uniform susceptibility diverges algebraically with non-universal exponents. This is a signature that the novel quantum-disordered phase is a quantum Griffiths phase, as also directly confirmed by the statistical distribution of local gaps. This study thus presents evidence of a genuine quantum Griffiths phenomenon in a two-dimensional Heisenberg antiferromagnet.Comment: 14 pages, 17 figures; published versio

    Experimental evidence of percolation phase transition in surface plasmons generation

    Full text link
    Carrying digital information in traditional copper wires is becoming a major issue in electronic circuits. Optical connections such as fiber optics offers unprecedented transfer capacity, but the mismatch between the optical wavelength and the transistors size drastically reduces the coupling efficiency. By merging the abilities of photonics and electronics, surface plasmon photonics, or 'plasmonics' exhibits strong potential. Here, we propose an original approach to fully understand the nature of surface electrons in plasmonic systems, by experimentally demonstrating that surface plasmons can be modeled as a phase of surface waves. First and second order phase transitions, associated with percolation transitions, have been experimentally observed in the building process of surface plasmons in lattice of subwavelength apertures. Percolation theory provides a unified framework for surface plasmons description

    Tunneling-percolation origin of nonuniversality: theory and experiments

    Get PDF
    A vast class of disordered conducting-insulating compounds close to the percolation threshold is characterized by nonuniversal values of transport critical exponent t, in disagreement with the standard theory of percolation which predicts t = 2.0 for all three dimensional systems. Various models have been proposed in order to explain the origin of such universality breakdown. Among them, the tunneling-percolation model calls into play tunneling processes between conducting particles which, under some general circumstances, could lead to transport exponents dependent of the mean tunneling distance a. The validity of such theory could be tested by changing the parameter a by means of an applied mechanical strain. We have applied this idea to universal and nonuniversal RuO2-glass composites. We show that when t > 2 the measured piezoresistive response \Gamma, i. e., the relative change of resistivity under applied strain, diverges logarithmically at the percolation threshold, while for t = 2, \Gamma does not show an appreciable dependence upon the RuO2 volume fraction. These results are consistent with a mean tunneling dependence of the nonuniversal transport exponent as predicted by the tunneling-percolation model. The experimental results are compared with analytical and numerical calculations on a random-resistor network model of tunneling-percolation.Comment: 13 pages, 12 figure

    Response of a catalytic reaction to periodic variation of the CO pressure: Increased CO_2 production and dynamic phase transition

    Full text link
    We present a kinetic Monte Carlo study of the dynamical response of a Ziff-Gulari-Barshad model for CO oxidation with CO desorption to periodic variation of the CO presure. We use a square-wave periodic pressure variation with parameters that can be tuned to enhance the catalytic activity. We produce evidence that, below a critical value of the desorption rate, the driven system undergoes a dynamic phase transition between a CO_2 productive phase and a nonproductive one at a critical value of the period of the pressure oscillation. At the dynamic phase transition the period-averged CO_2 production rate is significantly increased and can be used as a dynamic order parameter. We perform a finite-size scaling analysis that indicates the existence of power-law singularities for the order parameter and its fluctuations, yielding estimated critical exponent ratios β/ν≈0.12\beta/\nu \approx 0.12 and γ/ν≈1.77\gamma/\nu \approx 1.77. These exponent ratios, together with theoretical symmetry arguments and numerical data for the fourth-order cumulant associated with the transition, give reasonable support for the hypothesis that the observed nonequilibrium dynamic phase transition is in the same universality class as the two-dimensional equilibrium Ising model.Comment: 18 pages, 10 figures, accepted in Physical Review

    Origin of the Universal Roughness Exponent of Brittle Fracture Surfaces: Correlated Percolation in the Damage Zone

    Full text link
    We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the fracture process being a correlated percolation process in a self-generated quadratic damage gradient. We use the quasi-static two-dimensional fuse model as a paradigm of a fracture model. We measure for this model, that exhibits a correlated percolation process, the correlation length exponent nu approximately equal to 1.35 and conjecture it to be equal to that of uncorrelated percolation, 4/3. We then show that the roughness exponent in the fuse model is zeta = 2 nu/(1+2 nu)= 8/11. This is in accordance with the numerical value zeta=0.75. As for three-dimensional brittle fractures, a mean-field theory gives nu=2, leading to zeta=4/5 in full accordance with the universally observed value zeta =0.80.Comment: 4 pages RevTeX
    • …
    corecore