108 research outputs found

    Discussion of "Functional Models for Time-Varying Random Objects'' by Dubey and M\"uller

    Full text link
    The discussion focuses on metric covariance, a new association measure between paired random objects in a metric space, developed by Dubey and M\"uller, and on its relationship with other similar concepts which have previously appeared in the literature, including distance covariance by Sz\'ekely et al, as well as its generalisations which rely on the formalism of reproducing kernel Hilbert spaces (RKHS)

    K2-ABC: Approximate Bayesian Computation with Kernel Embeddings

    Get PDF
    Complicated generative models often result in a situation where computing the likelihood of observed data is intractable, while simulating from the conditional density given a parameter value is relatively easy. Approximate Bayesian Computation (ABC) is a paradigm that enables simulation-based posterior inference in such cases by measuring the similarity between simulated and observed data in terms of a chosen set of summary statistics. However, there is no general rule to construct sufficient summary statistics for complex models. Insufficient summary statistics will "leak" information, which leads to ABC algorithms yielding samples from an incorrect (partial) posterior. In this paper, we propose a fully nonparametric ABC paradigm which circumvents the need for manually selecting summary statistics. Our approach, K2-ABC, uses maximum mean discrepancy (MMD) as a dissimilarity measure between the distributions over observed and simulated data. MMD is easily estimated as the squared difference between their empirical kernel embeddings. Experiments on a simulated scenario and a real-world biological problem illustrate the effectiveness of the proposed algorithm

    A Note on Optimizing Distributions using Kernel Mean Embeddings

    Full text link
    Kernel mean embeddings are a popular tool that consists in representing probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space. When the kernel is characteristic, mean embeddings can be used to define a distance between probability measures, known as the maximum mean discrepancy (MMD). A well-known advantage of mean embeddings and MMD is their low computational cost and low sample complexity. However, kernel mean embeddings have had limited applications to problems that consist in optimizing distributions, due to the difficulty of characterizing which Hilbert space vectors correspond to a probability distribution. In this note, we propose to leverage the kernel sums-of-squares parameterization of positive functions of Marteau-Ferey et al. [2020] to fit distributions in the MMD geometry. First, we show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense. Then, we provide algorithms to optimize such distributions in the finite-sample setting, which we illustrate in a density fitting numerical experiment

    Spread Divergences

    Full text link
    For distributions p and q with different supports, the divergence D(p|q) may not exist. We define a spread divergence on modified p and q and describe sufficient conditions for the existence of such a divergence. We demonstrate how to maximize the discriminatory power of a given divergence by parameterizing and learning the spread. We also give examples of using a spread divergence to train and improve implicit generative models, including linear models (Independent Components Analysis) and non-linear models (Deep Generative Networks)

    Informative Features for Model Comparison

    Get PDF
    Given two candidate models, and a set of target observations, we address the problem of measuring the relative goodness of fit of the two models. We propose two new statistical tests which are nonparametric, computationally efficient (runtime complexity is linear in the sample size), and interpretable. As a unique advantage, our tests can produce a set of examples (informative features) indicating the regions in the data domain where one model fits significantly better than the other. In a real-world problem of comparing GAN models, the test power of our new test matches that of the state-of-the-art test of relative goodness of fit, while being one order of magnitude faster.Comment: Accepted to NIPS 201
    • …
    corecore