66 research outputs found

    Superstrong and other large cardinals are never Laver indestructible

    Full text link
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, \Sigma_n-reflecting cardinals, \Sigma_n-correct cardinals and \Sigma_n-extendible cardinals (all for n>2) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if \kappa\ exhibits any of them, with corresponding target \theta, then in any forcing extension arising from nontrivial strategically <\kappa-closed forcing Q in V_\theta, the cardinal \kappa\ will exhibit none of the large cardinal properties with target \theta\ or larger.Comment: 19 pages. Commentary concerning this article can be made at http://jdh.hamkins.org/superstrong-never-indestructible. Minor changes in v

    Laver and set theory

    Full text link
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.Accepted manuscrip

    Weak Indestructibility and Reflection

    Full text link
    This work is a part of my upcoming thesis [7]. We establish an equiconsistency between (1) weak indestructibility for all κ+2\kappa +2-degrees of strength for cardinals κ\kappa in the presence of a proper class of strong cardinals, and (2) a proper class of cardinals that are strong reflecting strongs. We in fact get weak indestructibility for degrees of strength far beyond κ+2\kappa +2, well beyond the next inaccessible limit of measurables (of the ground model). One direction is proven using forcing and the other using core model techniques from inner model theory. Additionally, connections between weak indestructibility and the reflection properties associated with Woodin cardinals are discussed.Comment: 28 page

    Set-Theoretic Geology

    Full text link
    A ground of the universe V is a transitive proper class W subset V, such that W is a model of ZFC and V is obtained by set forcing over W, so that V = W[G] for some W-generic filter G subset P in W . The model V satisfies the ground axiom GA if there are no such W properly contained in V . The model W is a bedrock of V if W is a ground of V and satisfies the ground axiom. The mantle of V is the intersection of all grounds of V . The generic mantle of V is the intersection of all grounds of all set-forcing extensions of V . The generic HOD, written gHOD, is the intersection of all HODs of all set-forcing extensions. The generic HOD is always a model of ZFC, and the generic mantle is always a model of ZF. Every model of ZFC is the mantle and generic mantle of another model of ZFC. We prove this theorem while also controlling the HOD of the final model, as well as the generic HOD. Iteratively taking the mantle penetrates down through the inner mantles to what we call the outer core, what remains when all outer layers of forcing have been stripped away. Many fundamental questions remain open.Comment: 44 pages; commentary concerning this article can be made at http://jdh.hamkins.org/set-theoreticgeology
    • …
    corecore