75 research outputs found

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Exponential Golomb and Rice Error Correction codes for generalized near-capacity joint source and channel coding

    No full text
    The recently proposed Unary Error Correction (UEC) and Elias Gamma Error Correction (EGEC) codes facilitate the near-capacity Joint Source and Channel Coding (JSCC) of symbol values selected from large alphabets at a low complexity. Despite their large alphabet, these codes were only designed for a limited range of symbol value probability distributions. In this paper, we generalize the family of UEC and EGEC codes to the class of Rice and Exponential Golomb (ExpG) Error Correction (RiceEC and ExpGEC) codes, which have a much wider applicability, including the symbols produced by the H.265 video codec, the letters of the English alphabet and in fact any arbitrary monotonic unbounded source distributions. Furthermore, the practicality of the proposed codes is enhanced to allow a continuous stream of symbol values to be encoded and decoded using only fixed-length system components. We explore the parameter space to offer beneficial trade-offs between error correction capability, decoding complexity, as well as transmission-energy, -duration and -bandwidth over a wide range of operating conditions. In each case, we show that our codes offer significant performance improvements over the best of several state-of-the-art benchmarkers. In particular, our codes achieve the same error correction capability, as well as transmissionenergy, -duration and -bandwidth as a Variable Length Error- Correction (VLEC) code benchmarker, while reducing the decoding complexity by an order of magnitude. In comparison with the best of the other JSCC and Separate Source and Channel Coding (SSCC) benchmarkers, our codes consistently offer E_b/N_0 gains of between 0.5 dB and 1.0 dB which only appear to be modest, because the system operates close to capacity. These improvements are achieved for free, since they are not achieved at the cost of increasing transmission-energy, -duration, -bandwidth or decoding complexity

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Unequal Error Protection in BICM with QAM Constellations: Interleaver and Code Design

    Get PDF
    In this paper we present a general methodology for the interleaver and code design for QAM-based BICM transmissions. We develop analytical bounds on the bit error rate and we use them to predict the performance of BICM when unequal error protection (UEP) is introduced by the constellation labeling. Based on these bounds, the optimum design of interleaver and code is presented. The improvements obtained reached 2~dB for the analyzed cases, and are obtained without complexity increase. Although previous works noted the influence of the interleaver design and the UEP, to the best of our knowledge, this paper is the first to analyze formally this problem for BICM transmissions

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)

    Improving Bandwidth Utilization in a 1 Tbps Airborne MIMO Communications Downlink

    Get PDF
    FEC techniques are compared for different MIMO configurations of a high altitude, extremely wide bandwidth radio frequency downlink. Monte Carlo simulations are completed in MATLAB® with the aim of isolating the impacts of turbo codes and LDPC codes on system throughput and error performance. The system is modeled as a transmit-only static array at an altitude of 60,000 feet, with no interferers in the channel. Transmissions are received by a static receiver array. Simulations attempt to determine what modulation types should be considered for practical implementation, and what FEC codes enable these modulation schemes. The antenna configurations used in this study are [44:352], [62:248], and [80:160] transmitters to receivers. Effects from waveform generation, mixing, down-conversion, and amplification are not considered. Criteria of interest were BER and throughput, with the maximum allowable value of the former set at 1 x 10-5, and the latter set at a 1 terabits per second (Tbps) transfer rate for a successful configuration. Results show that the best performing system configuration was unable to meet both criteria, but was capable of improving over Brueggen\u27s 2012 research, which used Reed-Solomon codes and a MIMO configuration of [80:160], by 18.6%. The best-case configuration produced a throughput rate of 0.83 Tbps at a BER of less than 1 x 10-8, by implementing a rate 2/3 LDPC code with QAM constellation of 16 symbols
    • …
    corecore