6,120 research outputs found

    (Self-Attentive) Autoencoder-based Universal Language Representation for Machine Translation

    Full text link
    Universal language representation is the holy grail in machine translation (MT). Thanks to the new neural MT approach, it seems that there are good perspectives towards this goal. In this paper, we propose a new architecture based on combining variational autoencoders with encoder-decoders and introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common universal representation. Since the final objective of this universal representation is producing close results for similar input sentences (in any language), we propose to evaluate it by encoding the same sentence in two different languages, decoding both latent representations into the same language and comparing both outputs. Preliminary results on the WMT 2017 Turkish/English task shows that the proposed architecture is capable of learning a universal language representation and simultaneously training both translation directions with state-of-the-art results.Comment: 7 pages, 4 figure

    A neural interlingua for multilingual machine translation

    Full text link
    We incorporate an explicit neural interlingua into a multilingual encoder-decoder neural machine translation (NMT) architecture. We demonstrate that our model learns a language-independent representation by performing direct zero-shot translation (without using pivot translation), and by using the source sentence embeddings to create an English Yelp review classifier that, through the mediation of the neural interlingua, can also classify French and German reviews. Furthermore, we show that, despite using a smaller number of parameters than a pairwise collection of bilingual NMT models, our approach produces comparable BLEU scores for each language pair in WMT15.Comment: Accepted in WMT 1

    Improving Multilingual Semantic Textual Similarity with Shared Sentence Encoder for Low-resource Languages

    Full text link
    Measuring the semantic similarity between two sentences (or Semantic Textual Similarity - STS) is fundamental in many NLP applications. Despite the remarkable results in supervised settings with adequate labeling, little attention has been paid to this task in low-resource languages with insufficient labeling. Existing approaches mostly leverage machine translation techniques to translate sentences into rich-resource language. These approaches either beget language biases, or be impractical in industrial applications where spoken language scenario is more often and rigorous efficiency is required. In this work, we propose a multilingual framework to tackle the STS task in a low-resource language e.g. Spanish, Arabic , Indonesian and Thai, by utilizing the rich annotation data in a rich resource language, e.g. English. Our approach is extended from a basic monolingual STS framework to a shared multilingual encoder pretrained with translation task to incorporate rich-resource language data. By exploiting the nature of a shared multilingual encoder, one sentence can have multiple representations for different target translation language, which are used in an ensemble model to improve similarity evaluation. We demonstrate the superiority of our method over other state of the art approaches on SemEval STS task by its significant improvement on non-MT method, as well as an online industrial product where MT method fails to beat baseline while our approach still has consistently improvements

    XNLI: Evaluating Cross-lingual Sentence Representations

    Full text link
    State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.Comment: EMNLP 201

    Learning Cross-Lingual Sentence Representations via a Multi-task Dual-Encoder Model

    Full text link
    A significant roadblock in multilingual neural language modeling is the lack of labeled non-English data. One potential method for overcoming this issue is learning cross-lingual text representations that can be used to transfer the performance from training on English tasks to non-English tasks, despite little to no task-specific non-English data. In this paper, we explore a natural setup for learning cross-lingual sentence representations: the dual-encoder. We provide a comprehensive evaluation of our cross-lingual representations on a number of monolingual, cross-lingual, and zero-shot/few-shot learning tasks, and also give an analysis of different learned cross-lingual embedding spaces.Comment: Accepted at the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019

    Cross-Lingual Transfer Learning for Multilingual Task Oriented Dialog

    Full text link
    One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Since data collection for machine learning models for this task is time-consuming, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. However, development of such models has largely been hindered by the lack of multilingual training data. In this paper, we present a new data set of 57k annotated utterances in English (43k), Spanish (8.6k) and Thai (5k) across the domains weather, alarm, and reminder. We use this data set to evaluate three different cross-lingual transfer methods: (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, multilingual contextual word representations give better results than using cross-lingual static embeddings. We also compare the cross-lingual methods to using monolingual resources in the form of contextual ELMo representations and find that given just small amounts of target language data, this method outperforms all cross-lingual methods, which highlights the need for more sophisticated cross-lingual methods.Comment: 11 pages, to be presented at NAACL 201

    Towards Interlingua Neural Machine Translation

    Full text link
    Common intermediate language representation in neural machine translation can be used to extend bilingual to multilingual systems by incremental training. In this paper, we propose a new architecture based on introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common intermediate representation. Translation results on the low-resourced tasks (Turkish-English and Kazakh-English tasks, from the popular Workshop on Machine Translation benchmark) show the following BLEU improvements up to 2.8. However, results on a larger dataset (Russian-English and Kazakh-English, from the same baselines) show BLEU loses if the same amount. While our system is only providing improvements for the low-resourced tasks in terms of translation quality, our system is capable of quickly deploying new language pairs without retraining the rest of the system, which may be a game-changer in some situations (i.e. in a disaster crisis where international help is required towards a small region or to develop some translation system for a client). Precisely, what is most relevant from our architecture is that it is capable of: (1) reducing the number of production systems, with respect to the number of languages, from quadratic to linear (2) incrementally adding a new language in the system without retraining languages previously there and (3) allowing for translations from the new language to all the others present in the systemComment: arXiv admin note: substantial text overlap with arXiv:1810.0635

    Self-Attentive Model for Headline Generation

    Full text link
    Headline generation is a special type of text summarization task. While the amount of available training data for this task is almost unlimited, it still remains challenging, as learning to generate headlines for news articles implies that the model has strong reasoning about natural language. To overcome this issue, we applied recent Universal Transformer architecture paired with byte-pair encoding technique and achieved new state-of-the-art results on the New York Times Annotated corpus with ROUGE-L F1-score 24.84 and ROUGE-2 F1-score 13.48. We also present the new RIA corpus and reach ROUGE-L F1-score 36.81 and ROUGE-2 F1-score 22.15 on it.Comment: accepted for ECIR 201

    Multi-task Learning for Universal Sentence Embeddings: A Thorough Evaluation using Transfer and Auxiliary Tasks

    Full text link
    Learning distributed sentence representations is one of the key challenges in natural language processing. Previous work demonstrated that a recurrent neural network (RNNs) based sentence encoder trained on a large collection of annotated natural language inference data, is efficient in the transfer learning to facilitate other related tasks. In this paper, we show that joint learning of multiple tasks results in better generalizable sentence representations by conducting extensive experiments and analysis comparing the multi-task and single-task learned sentence encoders. The quantitative analysis using auxiliary tasks show that multi-task learning helps to embed better semantic information in the sentence representations compared to single-task learning. In addition, we compare multi-task sentence encoders with contextualized word representations and show that combining both of them can further boost the performance of transfer learning

    Audio-Linguistic Embeddings for Spoken Sentences

    Full text link
    We propose spoken sentence embeddings which capture both acoustic and linguistic content. While existing works operate at the character, phoneme, or word level, our method learns long-term dependencies by modeling speech at the sentence level. Formulated as an audio-linguistic multitask learning problem, our encoder-decoder model simultaneously reconstructs acoustic and natural language features from audio. Our results show that spoken sentence embeddings outperform phoneme and word-level baselines on speech recognition and emotion recognition tasks. Ablation studies show that our embeddings can better model high-level acoustic concepts while retaining linguistic content. Overall, our work illustrates the viability of generic, multi-modal sentence embeddings for spoken language understanding.Comment: International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201
    • …
    corecore