3,157 research outputs found

    Direct and Inverse Computational Methods for Electromagnetic Scattering in Biological Diagnostics

    Full text link
    Scattering theory has had a major roll in twentieth century mathematical physics. Mathematical modeling and algorithms of direct,- and inverse electromagnetic scattering formulation due to biological tissues are investigated. The algorithms are used for a model based illustration technique within the microwave range. A number of methods is given to solve the inverse electromagnetic scattering problem in which the nonlinear and ill-posed nature of the problem are acknowledged.Comment: 61 pages, 5 figure

    Uniqueness and factorization method for inverse elastic scattering with a single incoming wave

    Full text link
    The first part of this paper is concerned with the uniqueness to inverse time-harmonic elastic scattering from bounded rigid obstacles in two dimensions. It is proved that a connected polygonal obstacle can be uniquely identified by the far-field pattern over all observation directions corresponding to a single incident plane wave. Our approach is based on a new reflection principle for the first boundary value problem of the Navier equation. In the second part, we propose a revisited factorization method to recover a rigid elastic body with a single far-field pattern

    Some Results on Inverse Scattering

    Get PDF
    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: 1) Property CC and applications, 2) Stable inversion of fixed-energy 3D scattering data and its error estimate, 3) Inverse scattering with ''incomplete`` data, 4) Inverse scattering for inhomogeneous Schr\"odinger equation, 5) Krein's inverse scattering method, 6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, 7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, 8) Resonances: existence, location, perturbation theory, 9) Born inversion as an ill-posed problem, 10) Inverse obstacle scattering with fixed-frequency data, 11) Inverse scattering with data at a fixed energy and a fixed incident direction, 12) Creating materials with a desired refraction coefficient and wave-focusing properties.Comment: 24p

    Shape identification in inverse medium scattering problems with a single far-field pattern

    Get PDF
    Consider time-harmonic acoustic scattering from a bounded penetrable obstacle D⊂RND\subset \mathbb R^N embedded in a homogeneous background medium. The index of refraction characterizing the material inside DD is supposed to be H\"older continuous near the corners. If D⊂R2D\subset \mathbb R^2 is a convex polygon, we prove that its shape and location can be uniquely determined by the far-field pattern incited by a single incident wave at a fixed frequency. In dimensions N≥3N \geq 3, the uniqueness applies to penetrable scatterers of rectangular type with additional assumptions on the smoothness of the contrast. Our arguments are motivated by recent studies on the absence of non-scattering wavenumbers in domains with corners. As a byproduct, we show that the smoothness conditions in previous corner scattering results are only required near the corners
    • …
    corecore