9,624 research outputs found

    Coloring Graphs having Few Colorings over Path Decompositions

    Full text link
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (kϵ)pw(G)poly(n)(k-\epsilon)^{\operatorname{pw}(G)}\operatorname{poly}(n) time algorithm for deciding if an nn-vertex graph GG with pathwidth pw(G)\operatorname{pw}(G) admits a proper vertex coloring with kk colors unless the Strong Exponential Time Hypothesis (SETH) is false. We show here that nevertheless, when k>Δ/2+1k>\lfloor \Delta/2 \rfloor + 1, where Δ\Delta is the maximum degree in the graph GG, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph GG along with a path decomposition of GG with pathwidth pw(G)\operatorname{pw}(G) runs in (Δ/2+1)pw(G)poly(n)s(\lfloor \Delta/2 \rfloor + 1)^{\operatorname{pw}(G)}\operatorname{poly}(n)s time, that distinguishes between kk-colorable graphs having at most ss proper kk-colorings and non-kk-colorable graphs. We also show how to obtain a kk-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than kk at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is kk-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few kk-colorings. Yet every non-kk-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases.Comment: Strengthened result from uniquely kk-colorable graphs to graphs with few kk-colorings. Also improved running tim

    Approximating ATSP by Relaxing Connectivity

    Full text link
    The standard LP relaxation of the asymmetric traveling salesman problem has been conjectured to have a constant integrality gap in the metric case. We prove this conjecture when restricted to shortest path metrics of node-weighted digraphs. Our arguments are constructive and give a constant factor approximation algorithm for these metrics. We remark that the considered case is more general than the directed analog of the special case of the symmetric traveling salesman problem for which there were recent improvements on Christofides' algorithm. The main idea of our approach is to first consider an easier problem obtained by significantly relaxing the general connectivity requirements into local connectivity conditions. For this relaxed problem, it is quite easy to give an algorithm with a guarantee of 3 on node-weighted shortest path metrics. More surprisingly, we then show that any algorithm (irrespective of the metric) for the relaxed problem can be turned into an algorithm for the asymmetric traveling salesman problem by only losing a small constant factor in the performance guarantee. This leaves open the intriguing task of designing a "good" algorithm for the relaxed problem on general metrics.Comment: 25 pages, 2 figures, fixed some typos in previous versio

    Subgraphs and Colourability of Locatable Graphs

    Full text link
    We study a game of pursuit and evasion introduced by Seager in 2012, in which a cop searches the robber from outside the graph, using distance queries. A graph on which the cop wins is called locatable. In her original paper, Seager asked whether there exists a characterisation of the graph property of locatable graphs by either forbidden or forbidden induced subgraphs, both of which we answer in the negative. We then proceed to show that such a characterisation does exist for graphs of diameter at most 2, stating it explicitly, and note that this is not true for higher diameter. Exploring a different direction of topic, we also start research in the direction of colourability of locatable graphs, we also show that every locatable graph is 4-colourable, but not necessarily 3-colourable.Comment: 25 page

    Every planar graph with the Liouville property is amenable

    Get PDF
    We introduce a strengthening of the notion of transience for planar maps in order to relax the standard condition of bounded degree appearing in various results, in particular, the existence of Dirichlet harmonic functions proved by Benjamini and Schramm. As a corollary we obtain that every planar non-amenable graph admits Dirichlet harmonic functions
    corecore