494,633 research outputs found
Unifying W-Algebras
We show that quantum Casimir W-algebras truncate at degenerate values of the
central charge c to a smaller algebra if the rank is high enough: Choosing a
suitable parametrization of the central charge in terms of the rank of the
underlying simple Lie algebra, the field content does not change with the rank
of the Casimir algebra any more. This leads to identifications between the
Casimir algebras themselves but also gives rise to new, `unifying' W-algebras.
For example, the kth unitary minimal model of WA_n has a unifying W-algebra of
type W(2,3,...,k^2 + 3 k + 1). These unifying W-algebras are non-freely
generated on the quantum level and belong to a recently discovered class of
W-algebras with infinitely, non-freely generated classical counterparts. Some
of the identifications are indicated by level-rank-duality leading to a coset
realization of these unifying W-algebras. Other unifying W-algebras are new,
including e.g. algebras of type WD_{-n}. We point out that all unifying quantum
W-algebras are finitely, but non-freely generated.Comment: 13 pages (plain TeX); BONN-TH-94-01, DFTT-15/9
Unifying Parsimonious Tree Reconciliation
Evolution is a process that is influenced by various environmental factors,
e.g. the interactions between different species, genes, and biogeographical
properties. Hence, it is interesting to study the combined evolutionary history
of multiple species, their genes, and the environment they live in. A common
approach to address this research problem is to describe each individual
evolution as a phylogenetic tree and construct a tree reconciliation which is
parsimonious with respect to a given event model. Unfortunately, most of the
previous approaches are designed only either for host-parasite systems, for
gene tree/species tree reconciliation, or biogeography. Hence, a method is
desirable, which addresses the general problem of mapping phylogenetic trees
and covering all varieties of coevolving systems, including e.g., predator-prey
and symbiotic relationships. To overcome this gap, we introduce a generalized
cophylogenetic event model considering the combinatorial complete set of local
coevolutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n^2), for two
phylogenies each with at most n leaves. Furthermore, we present an exact
branch-and-bound algorithm which uses the results from the dynamic programming
heuristic for discarding partial reconciliations. The approach has been
implemented as a Java application which is freely available from
http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Unifying Einstein and Palatini gravities
We consider a novel class of gravity theories where the connection is
related to the conformally scaled metric with
a scaling that depends on the scalar curvature only. We call them
C-theories and show that the Einstein and Palatini gravities can be obtained as
special limits. In addition, C-theories include completely new physically
distinct gravity theories even when . With nonlinear ,
C-theories interpolate and extrapolate the Einstein and Palatini cases and may
avoid some of their conceptual and observational problems. We further show that
C-theories have a scalar-tensor formulation, which in some special cases
reduces to simple Brans-Dicke-type gravity. If matter fields couple to the
connection, the conservation laws in C-theories are modified. The stability of
perturbations about flat space is determined by a simple condition on the
lagrangian.Comment: 17 pages, no figure
Unifying inflation and dark matter
We present a simple model where a scalar field is responsible for cosmic
inflation and generates the seed for structure formation, while its thermal
relic abundance explains dark matter in the universe. The inflaton
self-coupling also explains the observed neutrino masses. All the virtues can
be attained in a minimal extension of the Standard Model gauge group around the
TeV scale. We can also unveil these properties in the forthcoming ground based
experiments.Comment: 4 pages, 3 figures. Submitted conference proceedings, based on a talk
presented at UCLA DM08 conferenc
- …
