22 research outputs found

    Random graph asymptotics on high-dimensional tori

    Get PDF
    We investigate the scaling of the largest critical percolation cluster on a large d-dimensional torus, for nearest-neighbor percolation in high dimensions, or when d>6 for sufficient spread-out percolation. We use a relatively simple coupling argument to show that this largest critical cluster is, with high probability, bounded above by a large constant times V2/3V^{2/3} and below by a small constant times V2/3(logV)−4/3V^{2/3}(log V)^{-4/3}, where V is the volume of the torus. We also give a simple criterion in terms of the subcritical percolation two-point function on Z^d under which the lower bound can be improved to small constant times V2/3V^{2/3}, i.e., we prove random graph asymptotics for the largest critical cluster on the high-dimensional torus. This establishes a conjecture by Aizenman (1997), apart from logarithmic corrections. We discuss implications of these results on the dependence on boundary conditions for high-dimensional percolation. Our method is crucially based on the results by Borgs, Chayes, van der Hofstad, Slade and Spencer (2005a, 2005b), where the V2/3V^{2/3} scaling was proved subject to the assumption that a suitably defined critical window contains the percolation threshold on Z^d. We also strongly rely on mean-field results for percolation on Z^d proved by Hara (1990, 2005), Hara and Slade (1990) and Hara, van der Hofstad and Slade (2003).Comment: 22 page

    The near-critical planar FK-Ising model

    Get PDF
    We study the near-critical FK-Ising model. First, a determination of the correlation length defined via crossing probabilities is provided. Second, a phenomenon about the near-critical behavior of FK-Ising is highlighted, which is completely missing from the case of standard percolation: in any monotone coupling of FK configurations ωp\omega_p (e.g., in the one introduced in [Gri95]), as one raises pp near pcp_c, the new edges arrive in a self-organized way, so that the correlation length is not governed anymore by the number of pivotal edges at criticality.Comment: 34 pages, 8 figures. This is a streamlined version; the previous one contains more explanations and additional material on exceptional times in FK models with general qq. Furthermore, the statement and proof of Theorem 1.2 have slightly change

    One-dimensional infinite component vector spin glass with long-range interactions

    Full text link
    We investigate zero and finite temperature properties of the one-dimensional spin-glass model for vector spins in the limit of an infinite number m of spin components where the interactions decay with a power, \sigma, of the distance. A diluted version of this model is also studied, but found to deviate significantly from the fully connected model. At zero temperature, defect energies are determined from the difference in ground-state energies between systems with periodic and antiperiodic boundary conditions to determine the dependence of the defect-energy exponent \theta on \sigma. A good fit to this dependence is \theta =3/4-\sigma. This implies that the upper critical value of \sigma is 3/4, corresponding to the lower critical dimension in the d-dimensional short-range version of the model. For finite temperatures the large m saddle-point equations are solved self-consistently which gives access to the correlation function, the order parameter and the spin-glass susceptibility. Special attention is paid to the different forms of finite-size scaling effects below and above the lower critical value, \sigma =5/8, which corresponds to the upper critical dimension 8 of the hypercubic short-range model.Comment: 27 pages, 27 figures, 4 table

    On the size of the largest cluster in 2D critical percolation

    Full text link
    We consider (near-)critical percolation on the square lattice. Let M_n be the size of the largest open cluster contained in the box [-n,n]^2, and let pi(n) be the probability that there is an open path from O to the boundary of the box. It is well-known that for all 0< a < b the probability that M_n is smaller than an^2 pi(n) and the probability that M_n is larger than bn^2 pi(n) are bounded away from 0 as n tends to infinity. It is a natural question, which arises for instance in the study of so-called frozen-percolation processes, if a similar result holds for the probability that M_n is between an^2 pi(n) and bn^2 pi(n). By a suitable partition of the box, and a careful construction involving the building blocks, we show that the answer to this question is affirmative. The `sublinearity' of 1/pi(n) appears to be essential for the argument.Comment: 12 pages, 3 figures, minor change

    Upper bounds on the one-arm exponent for dependent percolation models

    Full text link
    We prove upper bounds on the one-arm exponent η1\eta_1 for dependent percolation models; while our main interest is level set percolation of smooth Gaussian fields, the arguments apply to other models in the Bernoulli percolation universality class, including Poisson-Voronoi and Poisson-Boolean percolation. More precisely, in dimension d=2d=2 we prove η1≤1/3\eta_1 \le 1/3 for Gaussian fields with rapid correlation decay (e.g.\ the Bargmann-Fock field), and in general dimensions we prove η1≤d/3\eta_1 \le d/3 for finite-range fields and η1≤d−2\eta_1 \le d-2 for fields with rapid correlation decay. Although these results are classical for Bernoulli percolation (indeed they are best-known in general), existing proofs do not extend to dependent percolation models, and we develop a new approach based on exploration and relative entropy arguments. We also establish a new Russo-type inequality for smooth Gaussian fields which we use to prove the sharpness of the phase transition for finite-range fields.Comment: 34 pages, 2 figure
    corecore