128 research outputs found

    Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals

    Get PDF
    Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A)f(A), where AA is a negative definite matrix and ff is the exponential function or one of the related ``φ\varphi functions'' such as φ1(z)=(ez−1)/z\varphi_1(z) = (e^z-1)/z. Building on previous work by Trefethen and Gutknecht, Gonchar and Rakhmanov, and Lu, we propose two methods for the fast evaluation of f(A)f(A) that are especially useful when shifted systems (A+zI)x=b(A+zI)x=b can be solved efficiently, e.g. by a sparse direct solver. The first method method is based on best rational approximations to ff on the negative real axis computed via the Carathéodory-Fejér procedure, and we conjecture that the accuracy scales as (9.28903… )−2n(9.28903\dots)^{-2n}, where nn is the number of complex matrix solves. In particular, three matrix solves suffice to evaluate f(A)f(A) to approximately six digits of accuracy. The second method is an application of the trapezoid rule on a Talbot-type contour

    Rational Krylov subspace methods for phi-functions in exponential integrators

    Get PDF
    Exponential integrators are a class of numerical methods for stiff systems of differential equations which require the computation of products of so-called matrix phi-functions and vectors. In this thesis, we consider the approximation of these matrix functions times some vector by rational and extended Krylov subspace methods. For arbitrary matrices with a field of values in the left complex half-plane, a uniform approximation is obtained that predicts a sublinear convergence

    Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection

    Get PDF
    Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi method, but we also discuss the nonorthogonal generalized Leja point (or PAIN) method. The issue of optimal pole selection for rational Krylov methods applied for approximating the resolvent and exponential function, and functions of Markov type, is treated in some detail

    Model order reduction of time-delay systems using a laguerre expansion technique

    Get PDF
    The demands for miniature sized circuits with higher operating speeds have increased the complexity of the circuit, while at high frequencies it is known that effects such as crosstalk, attenuation and delay can have adverse effects on signal integrity. To capture these high speed effects a very large number of system equations is normally required and hence model order reduction techniques are required to make the simulation of the circuits computationally feasible. This paper proposes a higher order Krylov subspace algorithm for model order reduction of time-delay systems based on a Laguerre expansion technique. The proposed technique consists of three sections i.e., first the delays are approximated using the recursive relation of Laguerre polynomials, then in the second part, the reduced order is estimated for the time-delay system using a delay truncation in the Laguerre domain and in the third part, a higher order Krylov technique using Laguerre expansion is computed for obtaining the reduced order time-delay system. The proposed technique is validated by means of real world numerical examples

    Incorporating Krylov Subspace Methods in the ETDRK4 Scheme

    Get PDF
    A modification of the (2,2)-Pade algorithm developed by Wade et al. for implementing the exponential time differencing fourth order Runge-Kutta (ETDRK4) method is introduced. The main computational difficulty in implementing the ETDRK4 method is the required approximation to the matrix exponential. Wade et al. use the fourth order (2,2)-Pade approximant in their algorithm and in this thesis we incorporate Krylov subspace methods in an attempt to improve efficiency. A background of Krylov subspace methods is provided and we describe how they are used in approximating the matrix exponential and how to implement them into the ETDRK4 method. The (2,2)-Pade and Krylov subspace algorithms are compared in solving the one and two dimensional Allen-Cahn equation with the ETDRK4 scheme. We find that in two dimensions, the Krylov subspace algorithm is faster, provided we have a spatial discretization that produces a symmetric matrix
    • …
    corecore