3 research outputs found

    Highly Efficient Multiview Depth Coding Based on Histogram Projection and Allowable Depth Distortion

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Mismatches between the precisions of representing the disparity, depth value and rendering position in 3D video systems cause redundancies in depth map representations. In this paper, we propose a highly efficient multiview depth coding scheme based on Depth Histogram Projection (DHP) and Allowable Depth Distortion (ADD) in view synthesis. Firstly, DHP exploits the sparse representation of depth maps generated from stereo matching to reduce the residual error from INTER and INTRA predictions in depth coding. We provide a mathematical foundation for DHP-based lossless depth coding by theoretically analyzing its rate-distortion cost. Then, due to the mismatch between depth value and rendering position, there is a many-to-one mapping relationship between them in view synthesis, which induces the ADD model. Based on this ADD model and DHP, depth coding with lossless view synthesis quality is proposed to further improve the compression performance of depth coding while maintaining the same synthesized video quality. Experimental results reveal that the proposed DHP based depth coding can achieve an average bit rate saving of 20.66% to 19.52% for lossless coding on Multiview High Efficiency Video Coding (MV-HEVC) with different groups of pictures. In addition, our depth coding based on DHP and ADD achieves an average depth bit rate reduction of 46.69%, 34.12% and 28.68% for lossless view synthesis quality when the rendering precision varies from integer, half to quarter pixels, respectively. We obtain similar gains for lossless depth coding on the 3D-HEVC, HEVC Intra coding and JPEG2000 platforms

    Unified depth intra coding for 3D video extension of HEVC

    No full text

    Discontinuity-Aware Base-Mesh Modeling of Depth for Scalable Multiview Image Synthesis and Compression

    Full text link
    This thesis is concerned with the challenge of deriving disparity from sparsely communicated depth for performing disparity-compensated view synthesis for compression and rendering of multiview images. The modeling of depth is essential for deducing disparity at view locations where depth is not available and is also critical for visibility reasoning and occlusion handling. This thesis first explores disparity derivation methods and disparity-compensated view synthesis approaches. Investigations reveal the merits of adopting a piece-wise continuous mesh description of depth for deriving disparity at target view locations to enable disparity-compensated backward warping of texture. Visibility information can be reasoned due to the correspondence relationship between views that a mesh model provides, while the connectivity of a mesh model assists in resolving depth occlusion. The recent JPEG 2000 Part-17 extension defines tools for scalable coding of discontinuous media using breakpoint-dependent DWT, where breakpoints describe discontinuity boundary geometry. This thesis proposes a method to efficiently reconstruct depth coded using JPEG 2000 Part-17 as a piece-wise continuous mesh, where discontinuities are driven by the encoded breakpoints. Results show that the proposed mesh can accurately represent decoded depth while its complexity scales along with decoded depth quality. The piece-wise continuous mesh model anchored at a single viewpoint or base-view can be augmented to form a multi-layered structure where the underlying layers carry depth information of regions that are occluded at the base-view. Such a consolidated mesh representation is termed a base-mesh model and can be projected to many viewpoints, to deduce complete disparity fields between any pair of views that are inherently consistent. Experimental results demonstrate the superior performance of the base-mesh model in multiview synthesis and compression compared to other state-of-the-art methods, including the JPEG Pleno light field codec. The proposed base-mesh model departs greatly from conventional pixel-wise or block-wise depth models and their forward depth mapping for deriving disparity ingrained in existing multiview processing systems. When performing disparity-compensated view synthesis, there can be regions for which reference texture is unavailable, and inpainting is required. A new depth-guided texture inpainting algorithm is proposed to restore occluded texture in regions where depth information is either available or can be inferred using the base-mesh model
    corecore