10,594 research outputs found

    Unified System for Processing Real and Simulated Data in the ATLAS Experiment

    Full text link
    The physics goals of the next Large Hadron Collider run include high precision tests of the Standard Model and searches for new physics. These goals require detailed comparison of data with computational models simulating the expected data behavior. To highlight the role which modeling and simulation plays in future scientific discovery, we report on use cases and experience with a unified system built to process both real and simulated data of growing volume and variety.Comment: XVII International Conference Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL), Obninsk, Russia, October 13 - 16, 201

    First Evaluation of the CPU, GPGPU and MIC Architectures for Real Time Particle Tracking based on Hough Transform at the LHC

    Full text link
    Recent innovations focused around {\em parallel} processing, either through systems containing multiple processors or processors containing multiple cores, hold great promise for enhancing the performance of the trigger at the LHC and extending its physics program. The flexibility of the CMS/ATLAS trigger system allows for easy integration of computational accelerators, such as NVIDIA's Tesla Graphics Processing Unit (GPU) or Intel's \xphi, in the High Level Trigger. These accelerators have the potential to provide faster or more energy efficient event selection, thus opening up possibilities for new complex triggers that were not previously feasible. At the same time, it is crucial to explore the performance limits achievable on the latest generation multicore CPUs with the use of the best software optimization methods. In this article, a new tracking algorithm based on the Hough transform will be evaluated for the first time on a multi-core Intel Xeon E5-2697v2 CPU, an NVIDIA Tesla K20c GPU, and an Intel \xphi\ 7120 coprocessor. Preliminary time performance will be presented.Comment: 13 pages, 4 figures, Accepted to JINS

    Massively Parallel Computing and the Search for Jets and Black Holes at the LHC

    Full text link
    Massively parallel computing at the LHC could be the next leap necessary to reach an era of new discoveries at the LHC after the Higgs discovery. Scientific computing is a critical component of the LHC experiment, including operation, trigger, LHC computing GRID, simulation, and analysis. One way to improve the physics reach of the LHC is to take advantage of the flexibility of the trigger system by integrating coprocessors based on Graphics Processing Units (GPUs) or the Many Integrated Core (MIC) architecture into its server farm. This cutting edge technology provides not only the means to accelerate existing algorithms, but also the opportunity to develop new algorithms that select events in the trigger that previously would have evaded detection. In this article we describe new algorithms that would allow to select in the trigger new topological signatures that include non-prompt jet and black hole--like objects in the silicon tracker.Comment: 15 pages, 11 figures, submitted to NIM

    Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25

    Full text link
    We analyse the sensitivity of IceCube-DeepCore to annihilation of neutralino dark matter in the solar core, generated within a 25 parameter version of the minimally supersymmetric standard model (MSSM-25). We explore the 25-dimensional parameter space using scanning methods based on importance sampling and using DarkSUSY 5.0.6 to calculate observables. Our scans produced a database of 6.02 million parameter space points with neutralino dark matter consistent with the relic density implied by WMAP 7-year data, as well as with accelerator searches. We performed a model exclusion analysis upon these points using the expected capabilities of the IceCube-DeepCore Neutrino Telescope. We show that IceCube-DeepCore will be sensitive to a number of models that are not accessible to direct detection experiments such as SIMPLE, COUPP and XENON100, indirect detection using Fermi-LAT observations of dwarf spheroidal galaxies, nor to current LHC searches.Comment: 15 pages, 13 figures. V2: Additional comparisons are made to limits from Fermi-LAT observations of dwarf spheroidal galaxies and to the 125 GeV Higgs signal from the LHC. The spectral hardness section has been removed. Matches version accepted for publication in JCAP. V3: Typos correcte
    corecore