14 research outputs found

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also ∣Ttβˆ–Ttβˆ’1∣| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(log⁑mlog⁑r)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(log⁑m)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant Ο΅>0\epsilon>0, there is no O(n1βˆ’Ο΅)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case

    Competitive Online Peak-Demand Minimization Using Energy Storage

    Full text link
    We study the problem of online peak-demand minimization under energy storage constraints. It is motivated by an increasingly popular scenario where large-load customers utilize energy storage to reduce the peak procurement from the grid, which accounts for up to 90%90\% of their electric bills. The problem is uniquely challenging due to (i) the coupling of online decisions across time imposed by the inventory constraints and (ii) the noncumulative nature of the peak procurement. In this paper, we develop an optimal online algorithm for the problem, attaining the best possible competitive ratio (CR) among all deterministic and randomized algorithms. We show that the optimal CR can be computed in polynomial time, by solving a linear number of linear-fractional problems. More importantly, we generalize our approach to develop an \emph{anytime-optimal} online algorithm that achieves the best possible CR at any epoch, given the inputs and online decisions so far. The algorithm retains the optimal worst-case performance and achieves adaptive average-case performance. Simulation results based on real-world traces show that, under typical settings, our algorithms improve peak reduction by over 19%19\% as compared to baseline alternatives
    corecore