247 research outputs found

    E-Generalization Using Grammars

    Full text link
    We extend the notion of anti-unification to cover equational theories and present a method based on regular tree grammars to compute a finite representation of E-generalization sets. We present a framework to combine Inductive Logic Programming and E-generalization that includes an extension of Plotkin's lgg theorem to the equational case. We demonstrate the potential power of E-generalization by three example applications: computation of suggestions for auxiliary lemmas in equational inductive proofs, computation of construction laws for given term sequences, and learning of screen editor command sequences.Comment: 49 pages, 16 figures, author address given in header is meanwhile outdated, full version of an article in the "Artificial Intelligence Journal", appeared as technical report in 2003. An open-source C implementation and some examples are found at the Ancillary file

    Non-disjoint Combined Unification and Closure by Equational Paramodulation

    Get PDF
    Extended version available at https://hal.inria.fr/hal-03329075International audienceClosure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories

    Non-disjoint Combined Unification and Closure by Equational Paramodulation (Extended Version)

    Get PDF
    Short version published in the Proceedings of FroCoS 2021Closure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories

    Knowledge Problems in Equational Extensions of Subterm Convergent Theories

    Get PDF
    UNIF 2018 was affiliated with the Third International Conference on Formal Structures for Computation and Deduction FSCD 2018, part of the Federated Logic Conference FLoC 2018International audienceWe study decision procedures for two knowledge problems critical to the verification of security protocols, namely the intruder deduction and the static equivalence problems. These problems can be related to particular forms of context matching and context unification. Both problems are defined with respect to an equational theory and are known to be decidable when the equational theory is given by a subterm convergent term rewrite system. In this note we extend this to consider a subterm convergent equational term rewrite system defined modulo an equational theory, like Commutativity or Associativity-Commutativity. We show that for certain classes of such equational theories, namely the shallow classes, the two knowledge problems remain decidable

    Termination of Narrowing: Automated Proofs and Modularity Properties

    Full text link
    En 1936 Alan Turing demostro que el halting problem, esto es, el problema de decidir si un programa termina o no, es un problema indecidible para la inmensa mayoria de los lenguajes de programacion. A pesar de ello, la terminacion es un problema tan relevante que en las ultimas decadas un gran numero de tecnicas han sido desarrolladas para demostrar la terminacion de forma automatica de la maxima cantidad posible de programas. Los sistemas de reescritura de terminos proporcionan un marco teorico abstracto perfecto para el estudio de la terminacion de programas. En este marco, la evaluaci on de un t ermino consiste en la aplicacion no determinista de un conjunto de reglas de reescritura. El estrechamiento (narrowing) de terminos es una generalizacion de la reescritura que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un conjunto de reglas que denan la suma y la multiplicacion, la reescritura permite calcular expresiones aritmeticas, mientras que el estrechamiento permite resolver ecuaciones con variables. Esta tesis constituye el primer estudio en profundidad de las propiedades de terminacion del estrechamiento. Las contribuciones son las siguientes. En primer lugar, se identican clases de sistemas en las que el estrechamiento tiene un comportamiento bueno, en el sentido de que siempre termina. Muchos metodos de razonamiento automatico, como el analisis de la semantica de lenguajes de programaci on mediante operadores de punto jo, se benefician de esta caracterizacion. En segundo lugar, se introduce un metodo automatico, basado en el marco teorico de pares de dependencia, para demostrar la terminacion del estrechamiento en un sistema particular. Nuestro metodo es, por primera vez, aplicable a cualquier clase de sistemas. En tercer lugar, se propone un nuevo metodo para estudiar la terminacion del estrechamiento desde un termino particular, permitiendo el analisis de la terminacion de lenguajes de programacion. El nuevo metodo generaliza losIborra López, J. (2010). Termination of Narrowing: Automated Proofs and Modularity Properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19251Palanci

    Computing Knowledge in Equational Extensions of Subterm Convergent Theories

    Get PDF
    International audienceWe study decision procedures for two knowledge problems critical to the verification of security protocols, namely the intruder deduction and the static equivalence problems. These problems can be related to particular forms of context matching and context unification. Both problems are defined with respect to an equational theory and are known to be decidable when the equational theory is given by a subterm convergent term rewrite system. In this work we extend this to consider a subterm convergent term rewrite system defined modulo an equational theory, like Commutativity. We present two pairs of solutions for these important problems. The first solves the deduction and static equivalence problems in systems modulo shallow theories such as Commutativity. The second provides a general procedure that solves the deduction and static equivalence problems in subterm convergent systems modulo syntactic permutative theories, provided a finite measure is ensured. Several examples of such theories are also given

    On Unfolding Completeness for Rewriting Logic Theories

    Full text link
    Many transformation systems for program optimization, program synthesis, and program specialization are based on fold/unfold transformations. In this paper, we investigate the semantic properties of a narrowing-based unfolding transformation that is useful to transform rewriting logic theories. We also present a transformation methodology that is able to determine whether an unfolding transformation step would cause incompleteness and avoid this problem by completing the transformed rewrite theory with suitable extra rules. More precisely, our methodology identifies the sources of incompleteness and derives a set of rules that are added to the transformed rewrite theory in order to preserve the semantics of the original theory.Alpuente Frasnedo, M.; Baggi, M.; Ballis, D.; Falaschi, M. (2010). On Unfolding Completeness for Rewriting Logic Theories. http://hdl.handle.net/10251/863

    From proof theory to theories theory

    Full text link
    In the last decades, several objects such as grammars, economical agents, laws of physics... have been defined as algorithms. In particular, after Brouwer, Heyting, and Kolomogorov, mathematical proofs have been defined as algorithms. In this paper, we show that mathematical theories can be also be defined as algorithms and that this definition has some advantages over the usual definition of theories as sets of axioms

    Building and Combining Matching Algorithms

    Get PDF
    International audienceThe concept of matching is ubiquitous in declarative programming and in automated reasoning. For instance, it is a key mechanism to run rule-based programs and to simplify clauses generated by theorem provers. A matching problem can be seen as a particular conjunction of equations where each equation has a ground side. We give an overview of techniques that can be applied to build and combine matching algorithms. First, we survey mutation-based techniques as a way to build a generic matching algorithm for a large class of equational theories. Second, combination techniques are introduced to get combined matching algorithms for disjoint unions of theories. Then we show how these combination algorithms can be extended to handle non-disjoint unions of theories sharing only constructors. These extensions are possible if an appropriate notion of normal form is computable

    Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints

    Get PDF
    The monadic shallow linear Horn fragment is well-known to be decidable and has many application, e.g., in security protocol analysis, tree automata, or abstraction refinement. It was a long standing open problem how to extend the fragment to the non-Horn case, preserving decidability, that would, e.g., enable to express non-determinism in protocols. We prove decidability of the non-Horn monadic shallow linear fragment via ordered resolution further extended with dismatching constraints and discuss some applications of the new decidable fragment.Comment: 29 pages, long version of CADE-26 pape
    • …
    corecore