115 research outputs found

    Unicyclic Graphs with equal Laplacian Energy

    Full text link
    We introduce a new operation on a class of graphs with the property that the Laplacian eigenvalues of the input and output graphs are related. Based on this operation, we obtain a family of order (square root of n) noncospectral unicyclic graphs on n vertices with the same Laplacian energy.Comment: 11 pages, 11 figures, slightly modified version of Theorem 1 when compared with original pape

    Laplacian coefficients of unicyclic graphs with the number of leaves and girth

    Full text link
    Let GG be a graph of order nn and let L(G,λ)=∑k=0n(−1)kck(G)λn−k\mathcal{L}(G,\lambda)=\sum_{k=0}^n (-1)^{k}c_{k}(G)\lambda^{n-k} be the characteristic polynomial of its Laplacian matrix. Motivated by Ili\'{c} and Ili\'{c}'s conjecture [A. Ili\'{c}, M. Ili\'{c}, Laplacian coefficients of trees with given number of leaves or vertices of degree two, Linear Algebra and its Applications 431(2009)2195-2202.] on all extremal graphs which minimize all the Laplacian coefficients in the set Un,l\mathcal{U}_{n,l} of all nn-vertex unicyclic graphs with the number of leaves ll, we investigate properties of the minimal elements in the partial set (Un,lg,⪯)(\mathcal{U}_{n,l}^g, \preceq) of the Laplacian coefficients, where Un,lg\mathcal{U}_{n,l}^g denote the set of nn-vertex unicyclic graphs with the number of leaves ll and girth gg. These results are used to disprove their conjecture. Moreover, the graphs with minimum Laplacian-like energy in Un,lg\mathcal{U}_{n,l}^g are also studied.Comment: 19 page, 4figure

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=∑v∈V(G)deg(v)⋅ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure
    • …
    corecore