20 research outputs found

    Ensemble Modeling for Multimodal Visual Action Recognition

    Full text link
    In this work, we propose an ensemble modeling approach for multimodal action recognition. We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset. Based on the underlying principle of focal loss, which captures the relationship between tail (scarce) classes and their prediction difficulties, we propose an exponentially decaying variant of focal loss for our current task. It initially emphasizes learning from the hard misclassified examples and gradually adapts to the entire range of examples in the dataset. This annealing process encourages the model to strike a balance between focusing on the sparse set of hard samples, while still leveraging the information provided by the easier ones. Additionally, we opt for the late fusion strategy to combine the resultant probability distributions from RGB and Depth modalities for final action prediction. Experimental evaluations on the MECCANO dataset demonstrate the effectiveness of our approach.Comment: 22nd International Conference on Image Analysis and Processing Workshops - Multimodal Action Recognition on the MECCANO Dataset, 202

    Establishment of Neural Networks Robust to Label Noise

    Full text link
    Label noise is a significant obstacle in deep learning model training. It can have a considerable impact on the performance of image classification models, particularly deep neural networks, which are especially susceptible because they have a strong propensity to memorise noisy labels. In this paper, we have examined the fundamental concept underlying related label noise approaches. A transition matrix estimator has been created, and its effectiveness against the actual transition matrix has been demonstrated. In addition, we examined the label noise robustness of two convolutional neural network classifiers with LeNet and AlexNet designs. The two FashionMINIST datasets have revealed the robustness of both models. We are not efficiently able to demonstrate the influence of the transition matrix noise correction on robustness enhancements due to our inability to correctly tune the complex convolutional neural network model due to time and computing resource constraints. There is a need for additional effort to fine-tune the neural network model and explore the precision of the estimated transition model in future research.Comment: 11 pages, 7 figure

    Recognizing Characters in Art History Using Deep Learning

    Full text link
    In the field of Art History, images of artworks and their contexts are core to understanding the underlying semantic information. However, the highly complex and sophisticated representation of these artworks makes it difficult, even for the experts, to analyze the scene. From the computer vision perspective, the task of analyzing such artworks can be divided into sub-problems by taking a bottom-up approach. In this paper, we focus on the problem of recognizing the characters in Art History. From the iconography of AnnunciationAnnunciation ofof thethe LordLord (Figure 1), we consider the representation of the main protagonists, MaryMary and GabrielGabriel, across different artworks and styles. We investigate and present the findings of training a character classifier on features extracted from their face images. The limitations of this method, and the inherent ambiguity in the representation of GabrielGabriel, motivated us to consider their bodies (a bigger context) to analyze in order to recognize the characters. Convolutional Neural Networks (CNN) trained on the bodies of MaryMary and GabrielGabriel are able to learn person related features and ultimately improve the performance of character recognition. We introduce a new technique that generates more data with similar styles, effectively creating data in the similar domain. We present experiments and analysis on three different models and show that the model trained on domain related data gives the best performance for recognizing character. Additionally, we analyze the localized image regions for the network predictions. Code is open-sourced and available at https://github.com/prathmeshrmadhu/recognize_characters_art_history and the link to the published peer-reviewed article is https://dl.acm.org/citation.cfm?id=3357242

    Can Continual Learning Improve Long-Tailed Recognition? Toward a Unified Framework

    Full text link
    The Long-Tailed Recognition (LTR) problem emerges in the context of learning from highly imbalanced datasets, in which the number of samples among different classes is heavily skewed. LTR methods aim to accurately learn a dataset comprising both a larger Head set and a smaller Tail set. We propose a theorem where under the assumption of strong convexity of the loss function, the weights of a learner trained on the full dataset are within an upper bound of the weights of the same learner trained strictly on the Head. Next, we assert that by treating the learning of the Head and Tail as two separate and sequential steps, Continual Learning (CL) methods can effectively update the weights of the learner to learn the Tail without forgetting the Head. First, we validate our theoretical findings with various experiments on the toy MNIST-LT dataset. We then evaluate the efficacy of several CL strategies on multiple imbalanced variations of two standard LTR benchmarks (CIFAR100-LT and CIFAR10-LT), and show that standard CL methods achieve strong performance gains in comparison to baselines and approach solutions that have been tailor-made for LTR. We also assess the applicability of CL techniques on real-world data by exploring CL on the naturally imbalanced Caltech256 dataset and demonstrate its superiority over state-of-the-art classifiers. Our work not only unifies LTR and CL but also paves the way for leveraging advances in CL methods to tackle the LTR challenge more effectively
    corecore