586 research outputs found

    Improved Soundness for QMA with Multiple Provers

    Full text link
    We present three contributions to the understanding of QMA with multiple provers: 1) We give a tight soundness analysis of the protocol of [Blier and Tapp, ICQNM '09], yielding a soundness gap Omega(1/N^2). Our improvement is achieved without the use of an instance with a constant soundness gap (i.e., without using a PCP). 2) We give a tight soundness analysis of the protocol of [Chen and Drucker, ArXiV '10], thereby improving their result from a monolithic protocol where Theta(sqrt(N)) provers are needed in order to have any soundness gap, to a protocol with a smooth trade-off between the number of provers k and a soundness gap Omega(k^2/N), as long as k>=Omega(log N). (And, when k=Theta(sqrt(N)), we recover the original parameters of Chen and Drucker.) 3) We make progress towards an open question of [Aaronson et al., ToC '09] about what kinds of NP-complete problems are amenable to sublinear multiple-prover QMA protocols, by observing that a large class of such examples can easily be derived from results already in the PCP literature - namely, at least the languages recognized by a non-deterministic RAMs in quasilinear time.Comment: 24 pages; comments welcom

    Largest separable balls around the maximally mixed bipartite quantum state

    Full text link
    For finite-dimensional bipartite quantum systems, we find the exact size of the largest balls, in spectral lpl_p norms for 1p1 \le p \le \infty, of separable (unentangled) matrices around the identity matrix. This implies a simple and intutively meaningful geometrical sufficient condition for separability of bipartite density matrices: that their purity \tr \rho^2 not be too large. Theoretical and experimental applications of these results include algorithmic problems such as computing whether or not a state is entangled, and practical ones such as obtaining information about the existence or nature of entanglement in states reached by NMR quantum computation implementations or other experimental situations.Comment: 7 pages, LaTeX. Motivation and verbal description of results and their implications expanded and improved; one more proof included. This version differs from the PRA version by the omission of some erroneous sentences outside the theorems and proofs, which will be noted in an erratum notice in PRA (and by minor notational differences

    Quantum XOR Games

    Get PDF
    We introduce quantum XOR games, a model of two-player one-round games that extends the model of XOR games by allowing the referee's questions to the players to be quantum states. We give examples showing that quantum XOR games exhibit a wide range of behaviors that are known not to exist for standard XOR games, such as cases in which the use of entanglement leads to an arbitrarily large advantage over the use of no entanglement. By invoking two deep extensions of Grothendieck's inequality, we present an efficient algorithm that gives a constant-factor approximation to the best performance players can obtain in a given game, both in case they have no shared entanglement and in case they share unlimited entanglement. As a byproduct of the algorithm we prove some additional interesting properties of quantum XOR games, such as the fact that sharing a maximally entangled state of arbitrary dimension gives only a small advantage over having no entanglement at all.Comment: 43 page

    Quantum de Finetti Theorems under Local Measurements with Applications

    Get PDF
    Quantum de Finetti theorems are a useful tool in the study of correlations in quantum multipartite states. In this paper we prove two new quantum de Finetti theorems, both showing that under tests formed by local measurements one can get a much improved error dependence on the dimension of the subsystems. We also obtain similar results for non-signaling probability distributions. We give the following applications of the results: We prove the optimality of the Chen-Drucker protocol for 3-SAT, under the exponential time hypothesis. We show that the maximum winning probability of free games can be estimated in polynomial time by linear programming. We also show that 3-SAT with m variables can be reduced to obtaining a constant error approximation of the maximum winning probability under entangled strategies of O(m^{1/2})-player one-round non-local games, in which the players communicate O(m^{1/2}) bits all together. We show that the optimization of certain polynomials over the hypersphere can be performed in quasipolynomial time in the number of variables n by considering O(log(n)) rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy of semidefinite programs. As an application to entanglement theory, we find a quasipolynomial-time algorithm for deciding multipartite separability. We consider a result due to Aaronson -- showing that given an unknown n qubit state one can perform tomography that works well for most observables by measuring only O(n) independent and identically distributed (i.i.d.) copies of the state -- and relax the assumption of having i.i.d copies of the state to merely the ability to select subsystems at random from a quantum multipartite state. The proofs of the new quantum de Finetti theorems are based on information theory, in particular on the chain rule of mutual information.Comment: 39 pages, no figure. v2: changes to references and other minor improvements. v3: added some explanations, mostly about Theorem 1 and Conjecture 5. STOC version. v4, v5. small improvements and fixe

    Testing product states, quantum Merlin-Arthur games and tensor optimisation

    Full text link
    We give a test that can distinguish efficiently between product states of n quantum systems and states which are far from product. If applied to a state psi whose maximum overlap with a product state is 1-epsilon, the test passes with probability 1-Theta(epsilon), regardless of n or the local dimensions of the individual systems. The test uses two copies of psi. We prove correctness of this test as a special case of a more general result regarding stability of maximum output purity of the depolarising channel. A key application of the test is to quantum Merlin-Arthur games with multiple Merlins, where we obtain several structural results that had been previously conjectured, including the fact that efficient soundness amplification is possible and that two Merlins can simulate many Merlins: QMA(k)=QMA(2) for k>=2. Building on a previous result of Aaronson et al, this implies that there is an efficient quantum algorithm to verify 3-SAT with constant soundness, given two unentangled proofs of O(sqrt(n) polylog(n)) qubits. We also show how QMA(2) with log-sized proofs is equivalent to a large number of problems, some related to quantum information (such as testing separability of mixed states) as well as problems without any apparent connection to quantum mechanics (such as computing injective tensor norms of 3-index tensors). As a consequence, we obtain many hardness-of-approximation results, as well as potential algorithmic applications of methods for approximating QMA(2) acceptance probabilities. Finally, our test can also be used to construct an efficient test for determining whether a unitary operator is a tensor product, which is a generalisation of classical linearity testing.Comment: 44 pages, 1 figure, 7 appendices; v6: added references, rearranged sections, added discussion of connections to classical CS. Final version to appear in J of the AC

    On the role of entanglement in quantum computational speed-up

    Get PDF
    For any quantum algorithm operating on pure states we prove that the presence of multi-partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the quantum algorithm is to offer an exponential speed-up over classical computation. Furthermore we prove that the algorithm can be classically efficiently simulated to within a prescribed tolerance \eta even if a suitably small amount of global entanglement (depending on \eta) is present. We explicitly identify the occurrence of increasing multi-partite entanglement in Shor's algorithm. Our results do not apply to quantum algorithms operating on mixed states in general and we discuss the suggestion that an exponential computational speed-up might be possible with mixed states in the total absence of entanglement. Finally, despite the essential role of entanglement for pure state algorithms, we argue that it is nevertheless misleading to view entanglement as a key resource for quantum computational power.Comment: Main proofs simplified. A few further explanatory remarks added. 22 pages, plain late

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Dimension Independent Disentanglers from Unentanglement and Applications

    Full text link
    Quantum entanglement is a key enabling ingredient in diverse applications. However, the presence of unwanted adversarial entanglement also poses challenges in many applications. In this paper, we explore methods to "break" quantum entanglement. Specifically, we construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input. We show: For every d,kd,\ell\ge k, there is an efficient channel Λ:CdCdCdk\Lambda: \mathbb{C}^{d\ell} \otimes \mathbb{C}^{d\ell} \to \mathbb{C}^{dk} such that for every bipartite separable state ρ1ρ2\rho_1\otimes \rho_2, the output Λ(ρ1ρ2)\Lambda(\rho_1\otimes\rho_2) is close to a k-partite separable state. Concretely, for some distribution μ\mu on states from Cd\mathbb{C}^d, Λ(ρ1ρ2)ψψkdμ(ψ)1O~((k3)1/4). \left\|\Lambda(\rho_1 \otimes \rho_2) - \int | \psi \rangle \langle \psi |^{\otimes k} d\mu(\psi)\right\|_1 \le \tilde O \left(\left(\frac{k^{3}}{\ell}\right)^{1/4}\right). Moreover, Λ(ψψψψ)=ψψk\Lambda(| \psi \rangle \langle \psi |^{\otimes \ell}\otimes | \psi \rangle \langle \psi |^{\otimes \ell}) = | \psi \rangle \langle \psi |^{\otimes k}. Without the bipartite unentanglement assumption, the above bound is conjectured to be impossible. Leveraging our disentanglers, we show that unentangled quantum proofs of almost general real amplitudes capture NEXP, greatly relaxing the nonnegative amplitudes assumption in the recent work of QMA^+(2)=NEXP. Specifically, our findings show that to capture NEXP, it suffices to have unentangled proofs of the form ψ=aψ++1aψ| \psi \rangle = \sqrt{a} | \psi_+ \rangle + \sqrt{1-a} | \psi_- \rangle where ψ+| \psi_+ \rangle has non-negative amplitudes, ψ| \psi_- \rangle only has negative amplitudes and a(1a)1/poly(n)| a-(1-a) | \ge 1/poly(n) with a[0,1]a \in [0,1]. Additionally, we present a protocol achieving an almost largest possible gap before obtaining QMA^R(k)=NEXP$, namely, a 1/poly(n) additive improvement to the gap results in this equality.Comment: 28 page
    corecore