8,438 research outputs found

    Underwater reconstruction using depth sensors

    Get PDF
    In this paper we describe experiments in which we acquire range images of underwater surfaces with four types of depth sensors and attempt to reconstruct underwater surfaces. Two conditions are tested: acquiring range images by submersing the sensors and by holding the sensors over the water line and recording through water. We found out that only the Kinect sensor is able to acquire depth images of submersed surfaces by holding the sensor above water. We compare the reconstructed underwater geometry with meshes obtained when the surfaces were not submersed. These findings show that 3D underwater reconstruction using depth sensors is possible, despite the high water absorption of the near infrared spectrum in which these sensors operate

    3-D Coverage Path Planning for Underwater Terrain Mapping

    Get PDF
    This thesis presents an autonomous approach of 3-D coverage of underwater terrain using multi-level coverage trees. An autonomous underwater vehicle (AUV) equipped with multi-beam sonar sensors, Doppler velocity log (DVL) and inertial measurement unit (IMU) sensors is used to achieve this goal. The underwater 3-D search space is represented by a multi-level coverage tree which is generated online based on the obstacle information collected by the AUV. The nodes of the tree correspond to safe sub-areas for AUV navigation which are identified based on obstacle density in neighborhood of free cells. Standard tree traversal strategies like depth-first-search (DFS) and breath-first-search (BFS) are then used for visiting all the nodes of the tree thus securing complete coverage of the 3-D space. The terrain data collected by the AUV during tree coverage is used offline for the 3-D reconstruction of seabed using alpha shapes algorithm. The performance of this method is validated using a high-fidelity underwater simulator UWSim based on Robot Operating System (ROS). The simulations show that the proposed methodology achieves complete coverage and accurate reconstruction of 3-D underwater terrain

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness
    corecore