7,001 research outputs found

    The boolean map distance: theory and efficient computation

    Full text link
    We propose a novel distance function, the boolean map distance (BMD), that defines the distance between two elements in an image based on the probability that they belong to different components after thresholding the image by a randomly selected threshold value. This concept has been explored in a number of recent publications, and has been proposed as an approximation of another distance function, the minimum barrier distance (MBD). The purpose of this paper is to introduce the BMD as a useful distance function in its own right. As such it shares many of the favorable properties of the MBD, while offering some additional advantages such as more efficient distance transform computation and straightforward extension to multi-channel images

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT
    • …
    corecore