102 research outputs found

    Neurons Activation Visualization and Information Theoretic Analysis

    Full text link
    Understanding the inner working mechanism of deep neural networks (DNNs) is essential and important for researchers to design and improve the performance of DNNs. In this work, the entropy analysis is leveraged to study the neurons activation behavior of the fully connected layers of DNNs. The entropy of the activation patterns of each layer can provide a performance metric for the evaluation of the network model accuracy. The study is conducted based on a well trained network model. The activation patterns of shallow and deep layers of the fully connected layers are analyzed by inputting the images of a single class. It is found that for the well trained deep neural networks model, the entropy of the neuron activation pattern is monotonically reduced with the depth of the layers. That is, the neuron activation patterns become more and more stable with the depth of the fully connected layers. The entropy pattern of the fully connected layers can also provide guidelines as to how many fully connected layers are needed to guarantee the accuracy of the model. The study in this work provides a new perspective on the analysis of DNN, which shows some interesting results.Comment: the paper is not so well written and need to be revise

    Ablation of a Robot's Brain: Neural Networks Under a Knife

    Full text link
    It is still not fully understood exactly how neural networks are able to solve the complex tasks that have recently pushed AI research forward. We present a novel method for determining how information is structured inside a neural network. Using ablation (a neuroscience technique for cutting away parts of a brain to determine their function), we approach several neural network architectures from a biological perspective. Through an analysis of this method's results, we examine important similarities between biological and artificial neural networks to search for the implicit knowledge locked away in the network's weights

    Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values

    Full text link
    Explaining the output of a complicated machine learning model like a deep neural network (DNN) is a central challenge in machine learning. Several proposed local explanation methods address this issue by identifying what dimensions of a single input are most responsible for a DNN's output. The goal of this work is to assess the sensitivity of local explanations to DNN parameter values. Somewhat surprisingly, we find that DNNs with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights. Our conjecture is that this phenomenon occurs because these explanations are dominated by the lower level features of a DNN, and that a DNN's architecture provides a strong prior which significantly affects the representations learned at these lower layers. NOTE: This work is now subsumed by our recent manuscript, Sanity Checks for Saliency Maps (to appear NIPS 2018), where we expand on findings and address concerns raised in Sundararajan et. al. (2018).Comment: Workshop Track International Conference on Learning Representations (ICLR

    ReLU Code Space: A Basis for Rating Network Quality Besides Accuracy

    Full text link
    We propose a new metric space of ReLU activation codes equipped with a truncated Hamming distance which establishes an isometry between its elements and polyhedral bodies in the input space which have recently been shown to be strongly related to safety, robustness, and confidence. This isometry allows the efficient computation of adjacency relations between the polyhedral bodies. Experiments on MNIST and CIFAR-10 indicate that information besides accuracy might be stored in the code space.Comment: in ICLR 2020 Workshop on Neural Architecture Search (NAS 2020

    Internal representation dynamics and geometry in recurrent neural networks

    Full text link
    The efficiency of recurrent neural networks (RNNs) in dealing with sequential data has long been established. However, unlike deep, and convolution networks where we can attribute the recognition of a certain feature to every layer, it is unclear what "sub-task" a single recurrent step or layer accomplishes. Our work seeks to shed light onto how a vanilla RNN implements a simple classification task by analysing the dynamics of the network and the geometric properties of its hidden states. We find that early internal representations are evocative of the real labels of the data but this information is not directly accessible to the output layer. Furthermore the network's dynamics and the sequence length are both critical to correct classifications even when there is no additional task relevant information provided.Comment: Presented as a poster at MAIS 2019: the Montreal AI Symposium, Montreal, Quebec, Canada, 201

    Clustering and Recognition of Spatiotemporal Features through Interpretable Embedding of Sequence to Sequence Recurrent Neural Networks

    Full text link
    Encoder-decoder recurrent neural network models (RNN Seq2Seq) have achieved great success in ubiquitous areas of computation and applications. It was shown to be successful in modeling data with both temporal and spatial dependencies for translation or prediction tasks. In this study, we propose an embedding approach to visualize and interpret the representation of data by these models. Furthermore, we show that the embedding is an effective method for unsupervised learning and can be utilized to estimate the optimality of model training. In particular, we demonstrate that embedding space projections of the decoder states of RNN Seq2Seq model trained on sequences prediction are organized in clusters capturing similarities and differences in the dynamics of these sequences. Such performance corresponds to an unsupervised clustering of any spatio-temporal features and can be employed for time-dependent problems such as temporal segmentation, clustering of dynamic activity, self-supervised classification, action recognition, failure prediction, etc. We test and demonstrate the application of the embedding methodology to time-sequences of 3D human body poses. We show that the methodology provides a high-quality unsupervised categorization of movements

    Deep Convolutional Decision Jungle for Image Classification

    Full text link
    We propose a novel method called deep convolutional decision jungle (CDJ) and its learning algorithm for image classification. The CDJ maintains the structure of standard convolutional neural networks (CNNs), i.e. multiple layers of multiple response maps fully connected. Each response map-or node-in both the convolutional and fully-connected layers selectively respond to class labels s.t. each data sample travels via a specific soft route of those activated nodes. The proposed method CDJ automatically learns features, whereas decision forests and jungles require pre-defined feature sets. Compared to CNNs, the method embeds the benefits of using data-dependent discriminative functions, which better handles multi-modal/heterogeneous data; further,the method offers more diverse sparse network responses, which in turn can be used for cost-effective learning/classification. The network is learnt by combining conventional softmax and proposed entropy losses in each layer. The entropy loss,as used in decision tree growing, measures the purity of data activation according to the class label distribution. The back-propagation rule for the proposed loss function is derived from stochastic gradient descent (SGD) optimization of CNNs. We show that our proposed method outperforms state-of-the-art methods on three public image classification benchmarks and one face verification dataset. We also demonstrate the use of auxiliary data labels, when available, which helps our method to learn more discriminative routing and representations and leads to improved classification

    Fast Dynamic Routing Based on Weighted Kernel Density Estimation

    Full text link
    Capsules as well as dynamic routing between them are most recently proposed structures for deep neural networks. A capsule groups data into vectors or matrices as poses rather than conventional scalars to represent specific properties of target instance. Besides of pose, a capsule should be attached with a probability (often denoted as activation) for its presence. The dynamic routing helps capsules achieve more generalization capacity with many fewer model parameters. However, the bottleneck that prevents widespread applications of capsule is the expense of computation during routing. To address this problem, we generalize existing routing methods within the framework of weighted kernel density estimation, and propose two fast routing methods with different optimization strategies. Our methods prompt the time efficiency of routing by nearly 40\% with negligible performance degradation. By stacking a hybrid of convolutional layers and capsule layers, we construct a network architecture to handle inputs at a resolution of 64×6464\times{64} pixels. The proposed models achieve a parallel performance with other leading methods in multiple benchmarks.Comment: 16 pages, 4 figures, submitted to eccv 201

    Interpreting Layered Neural Networks via Hierarchical Modular Representation

    Full text link
    Interpreting the prediction mechanism of complex models is currently one of the most important tasks in the machine learning field, especially with layered neural networks, which have achieved high predictive performance with various practical data sets. To reveal the global structure of a trained neural network in an interpretable way, a series of clustering methods have been proposed, which decompose the units into clusters according to the similarity of their inference roles. The main problems in these studies were that (1) we have no prior knowledge about the optimal resolution for the decomposition, or the appropriate number of clusters, and (2) there was no method with which to acquire knowledge about whether the outputs of each cluster have a positive or negative correlation with the input and output dimension values. In this paper, to solve these problems, we propose a method for obtaining a hierarchical modular representation of a layered neural network. The application of a hierarchical clustering method to a trained network reveals a tree-structured relationship among hidden layer units, based on their feature vectors defined by their correlation with the input and output dimension values

    A synthetic dataset for deep learning

    Full text link
    In this paper, we propose a novel method for generating a synthetic dataset obeying Gaussian distribution. Compared to the commonly used benchmark datasets with unknown distribution, the synthetic dataset has an explicit distribution, i.e., Gaussian distribution. Meanwhile, it has the same characteristics as the benchmark dataset MNIST. As a result, we can easily apply Deep Neural Networks (DNNs) on the synthetic dataset. This synthetic dataset provides a novel experimental tool to verify the proposed theories of deep learning
    • …
    corecore