68,979 research outputs found

    Induction and the discovery of the causes of scurvy: a computational reconstruction

    Get PDF
    AbstractThe work presented here addresses the problem of inductive reasoning in medical discoveries. The discovery of the causes of scurvy is studied and simulated using computational means. An inductive algorithm is successful in simulating some essential steps in the progress of the understanding of the disease and also allows us to simulate the false reasoning of previous centuries through the introduction of some a priori knowledge inherited from pre-clinical medicine. These results confirm the good results obtained by other AI researchers with an inductive approach of discovery, and illustrate the importance of the social and cultural environment on the way the inductive inference is performed and on its outcome

    Inference Belief and Interpretation in Science

    Get PDF
    This monograph explores the deeply cognitive roots of human scientific quest. The process of making scientific inferences is continuous with the day-to-day inferential activity of individuals, and is predominantly inductive in nature. Inductive inference, which is fallible, exploratory, and open-ended, is of essential relevance in our incessant efforts at making sense of a complex and uncertain world around us, and covers a vast range of cognitive activities, among which scientific exploration constitutes the pinnacle. Inductive inference has a personal aspect to it, being rooted in the cognitive unconscious of individuals, which has recently been found to be of paramount importance in a wide range of complex cognitive processes. One other major aspect of the process of inference making, including the making of scientific inferences, is the role of a vast web of beliefs lodged in the human mind, as also of a huge repertoire of heuristics, that constitute an important component of ‘unconscious intelligence’. Finally, human cognitive activity is dependent in a large measure on emotions and affects that operate mostly at an unconscious level. Of special importance in scientific inferential activity is the process of hypothesis making, which is examined in this book, along with the above aspects of inductive inference, at considerable depth. The book focuses on the inadequacy of the viewpoint of naive realism in understanding the context-dependence of scientific theories, where a cumulative progress towards an ultimate truth about Nature appears to be too simplistic a generalization. It poses a critique to the commonly perceived image of science where it is seen as the last word in logic and objectivity, the latter in the double sense of being independent of individual psychological propensities and, at the same time, approaching a correct understanding of the workings of a mind-independent nature. Adopting the naturalist point of view, it examines the essential tension between the cognitive endeavors of individuals and scientific communities, immersed in belief systems and cultures, on the one hand, and the engagement with a mind-independent reality on the other. In the end, science emerges as an interpretation of nature, which is perceived by us only contextually, as successively emerging cross-sections of a limited scope and extent. Successive waves of theory building in science appear as episodic and kaleidoscopic changes in perspective as certain in-built borders are crossed, rather than as a cumulative progress towards some ultimate truth. Based on current literature, I aim to set up, in the form of a plausible hypothesis, a framework for understanding the mechanisms underlying inductive inference in general and abduction in particular

    Inference Belief and Interpretation in Science

    Get PDF
    This monograph explores the deeply cognitive roots of human scientific quest. The process of making scientific inferences is continuous with the day-to-day inferential activity of individuals, and is predominantly inductive in nature. Inductive inference, which is fallible, exploratory, and open-ended, is of essential relevance in our incessant efforts at making sense of a complex and uncertain world around us, and covers a vast range of cognitive activities, among which scientific exploration constitutes the pinnacle. Inductive inference has a personal aspect to it, being rooted in the cognitive unconscious of individuals, which has recently been found to be of paramount importance in a wide range of complex cognitive processes. One other major aspect of the process of inference making, including the making of scientific inferences, is the role of a vast web of beliefs lodged in the human mind, as also of a huge repertoire of heuristics, that constitute an important component of ‘unconscious intelligence’. Finally, human cognitive activity is dependent in a large measure on emotions and affects that operate mostly at an unconscious level. Of special importance in scientific inferential activity is the process of hypothesis making, which is examined in this book, along with the above aspects of inductive inference, at considerable depth. The book focuses on the inadequacy of the viewpoint of naive realism in understanding the context-dependence of scientific theories, where a cumulative progress towards an ultimate truth about Nature appears to be too simplistic a generalization. It poses a critique to the commonly perceived image of science where it is seen as the last word in logic and objectivity, the latter in the double sense of being independent of individual psychological propensities and, at the same time, approaching a correct understanding of the workings of a mind-independent nature. Adopting the naturalist point of view, it examines the essential tension between the cognitive endeavors of individuals and scientific communities, immersed in belief systems and cultures, on the one hand, and the engagement with a mind-independent reality on the other. In the end, science emerges as an interpretation of nature, which is perceived by us only contextually, as successively emerging cross-sections of a limited scope and extent. Successive waves of theory building in science appear as episodic and kaleidoscopic changes in perspective as certain in-built borders are crossed, rather than as a cumulative progress towards some ultimate truth. Based on current literature, I aim to set up, in the form of a plausible hypothesis, a framework for understanding the mechanisms underlying inductive inference in general and abduction in particular

    Inference Belief and Interpretation in Science

    Get PDF
    This monograph explores the deeply cognitive roots of human scientific quest. The process of making scientific inferences is continuous with the day-to-day inferential activity of individuals, and is predominantly inductive in nature. Inductive inference, which is fallible, exploratory, and open-ended, is of essential relevance in our incessant efforts at making sense of a complex and uncertain world around us, and covers a vast range of cognitive activities, among which scientific exploration constitutes the pinnacle. Inductive inference has a personal aspect to it, being rooted in the cognitive unconscious of individuals, which has recently been found to be of paramount importance in a wide range of complex cognitive processes. One other major aspect of the process of inference making, including the making of scientific inferences, is the role of a vast web of beliefs lodged in the human mind, as also of a huge repertoire of heuristics, that constitute an important component of ‘unconscious intelligence’. Finally, human cognitive activity is dependent in a large measure on emotions and affects that operate mostly at an unconscious level. Of special importance in scientific inferential activity is the process of hypothesis making, which is examined in this book, along with the above aspects of inductive inference, at considerable depth. The book focuses on the inadequacy of the viewpoint of naive realism in understanding the context-dependence of scientific theories, where a cumulative progress towards an ultimate truth about Nature appears to be too simplistic a generalization. It poses a critique to the commonly perceived image of science where it is seen as the last word in logic and objectivity, the latter in the double sense of being independent of individual psychological propensities and, at the same time, approaching a correct understanding of the workings of a mind-independent nature. Adopting the naturalist point of view, it examines the essential tension between the cognitive endeavors of individuals and scientific communities, immersed in belief systems and cultures, on the one hand, and the engagement with a mind-independent reality on the other. In the end, science emerges as an interpretation of nature, which is perceived by us only contextually, as successively emerging cross-sections of a limited scope and extent. Successive waves of theory building in science appear as episodic and kaleidoscopic changes in perspective as certain in-built borders are crossed, rather than as a cumulative progress towards some ultimate truth. Based on current literature, I aim to set up, in the form of a plausible hypothesis, a framework for understanding the mechanisms underlying inductive inference in general and abduction in particular

    Reichenbach, Russell and the Metaphysics of Induction

    Get PDF
    Hans Reichenbach’s pragmatic treatment of the problem of induction in his later works on inductive inference was, and still is, of great interest. However, it has been dismissed as a pseudo-solution and it has been regarded as problematically obscure. This is, in large part, due to the difficulty in understanding exactly what Reichenbach’s solution is supposed to amount to, especially as it appears to offer no response to the inductive skeptic. For entirely different reasons, the significance of Bertrand Russell’s classic attempt to solve Hume’s problem is also both obscure and controversial. Russell accepted that Hume’s reasoning about induction was basically correct, but he argued that given the centrality of induction in our cognitive endeavors something must be wrong with Hume’s basic assumptions. What Russell effectively identified as Hume’s (and Reichenbach’s) failure was the commitment to a purely extensional empiricism. So, Russell’s solution to the problem of induction was to concede extensional empiricism and to accept that induction is grounded by accepting both a robust essentialism and a form of rationalism that allowed for a priori knowledge of universals. So, neither of those doctrines is without its critics. On the one hand, Reichenbach’s solution faces the charges of obscurity and of offering no response to the inductive skeptic. On the other hand, Russell’s solution looks to be objectionably ad hoc absent some non-controversial and independent argument that the universals that are necessary to ground the uniformity of nature actually exist and are knowable. This particular charge is especially likely to arise from those inclined towards purely extensional forms of empiricism. In this paper the significance of Reichenbach’s solution to the problem of induction will be made clearer via the comparison of these two historically important views about the problem of induction. The modest but important contention that will be made here is that the comparison of Reichenbach’s and Russell’s solutions calls attention to the opposition between extensional and intensional metaphysical presuppositions in the context of attempts to solve the problem of induction. It will be show that, in effect, what Reichenbach does is to establish an important epistemic limitation of extensional empiricism. So, it will be argued here that there is nothing really obscure about Reichenbach’s thoughts on induction at all. He was simply working out the limits of extensional empiricism with respect to inductive inference in opposition to the sort of metaphysics favored by Russell and like-minded thinkers

    Stroud's Humean Skepticism

    Get PDF
    In “The Constraints of Hume’s Naturalism” Barry Stroud takes on the task of looking at Hume’s negative and positive accounts of induction in conjunction. Stroud goes about doing this so that we might walk away with “a more general lesson about naturalism, at least when it is indulged in for philosophical purposes”. Given the boldness of Stroud’s quote from above there should be some explicit talk of this general lesson about naturalism outside of Hume’s, but there is none that is readily apparent. If a more general and philosophically motivated lesson about naturalism is to be gleaned from Stroud’s investigation of Hume, then we should take this to be a lesson implicit in Stroud and not Hume. Hence I shall argue that Stroud tacitly endorses the skeptical conclusions of David Hume about naturalism in general when indulged for philosophical purposes

    On the functional origins of essentialism

    Get PDF
    This essay examines the proposal that psychological essentialism results from a history of natural selection acting on human representation and inference systems. It has been argued that the features that distinguish essentialist representational systems are especially well suited for representing natural kinds. If the evolved function of essentialism is to exploit the rich inductive potential of such kinds, then it must be subserved by cognitive mechanisms that carry out at least three distinct functions: identifying these kinds in the environment, constructing essentialized representations of them, and constraining inductive inferences about kinds. Moreover, there are different kinds of kinds, ranging from nonliving substances to biological taxa to within-species kinds such as sex, and the causal processes that render these categories coherent for the purposes of inductive generalization vary. If the evolved function of essentialism is to support inductive generalization under ignorance of true causes, and if kinds of kinds vary in the implicit assumptions that support valid inductive inferences about them, then we expect different, functionally incompatible modes of essentialist thinking for different kinds. In particular, there should be differences in how biological and nonbiological substances, biological taxa, and biological and social role kinds are essentialized. The functional differences between these kinds of essentialism are discussed

    Why There Can\u27t be a Logic of Induction

    Get PDF
    Carap\u27s attempt to develop an inductive logic has been criticized on a variety of grounds, and while there may be some philosophers who believe that difficulties with Carnap\u27s approach can be overcome by further elaborations and modifications of his system, I think it is fair to say that the consensus is that the approach as a whole cannot succeed. In writing a paper on problems with inductive logic (and with Carnap\u27s approach in particular), I might therefore be accused of beating a dead horse. However, there are still some (e.g., Spirtes, Glymour and Scheines 1993) who seem to believe that purely formal methods for scientific inference can be developed. It may still then be useful to perform an autopsy on a dead horse when establishing the cause of death can shed light on issues of current concern. My intention in this paper is to point out a problem in Carnap\u27s inductive logic which has not been clearly articulated, and which applies generally to any inductive logic. My conclusion will be that scientific inference is inevitably and ineliminably guided by background beliefs and that different background beliefs lead to the application of different inductive rules and different standards of evidentiary relevance. At the end of this paper I will discuss the relationship between this conclusion and the problem of justifying induction

    A comparative analysis of the effects of teaching writing in a foreign language with the application of the deductive and the inductive approach

    Get PDF
    The aim of this paper is to present and analyse the results of the study which focused on measuring the effectiveness of the deductive and inductive approach in teaching writing in a foreign language. The aim will be achieved through the introduction of a relevant theoretical background, the presentation of the research design, a brief description of the research and finally the presentation and analysis of the outcomes
    corecore