302,663 research outputs found

    Timing the Information System Upgrade

    Get PDF
    A system upgrade requires careful planning as its implications to organizational systems might beenormous. Although in IS literature the requirements and process of systems upgrade have been discussed,the timing when to upgrade and what factors guide it has been of lesser interest. Consequently,in this paper we focus on information systems upgrading and its timing from the perspectiveof the user organization. Upgrading is enabled by the availability of a new software version. When toupgrade, meanwhile, is determined by the business interests of the customer organization, businesscalendar, development projects, and the vendor. These factors were identified by interviewing 14 ITmanagers, mainly CIOs, from middle size to large organizations in Finland. They presented 16 differentcases of upgrading or modifications of enterprise systems or similar undertakings. The analysis ofthe cases and the identification of the upgrade timing factors not only increase our understanding ofthe phenomena in general, but also reveal the customer’s motives and interests regarding IS upgradingand its timing

    Teaching How to Select an Optimal Agile, Plan-Driven, or Hybrid Software Development Approach: Lessons from Enterprise Software Development Leaders

    Get PDF
    Over 20 years after introducing and popularizing agile software development methods, those methods have proven effective in delivering projects that meet agile assumptions. Those assumptions require that projects be small and simple in scope and utilize small, colocated teams. Given this success, many agile advocates argue that agile should replace plan-driven methods in most or all project contexts, including those projects that deviate significantly from agile assumptions. However, today’s reality is that a diversity of agile, plan-driven, and hybrid approaches continue to be widely used, with many individual organizations using multiple approaches across different projects. Furthermore, while agile advocates argue that the primary barrier to agile adoption is the inertia of traditional organizational cultures, there are, in fact, many rational motivations for utilizing plan-driven and hybrid methods based on individual project characteristics. For information systems students, this creates confusion in two ways: 1) understanding that there is no single best way to develop software in all circumstances but, rather, teams should choose an optimal project approach based on project characteristics, and 2) unpacking and analyzing the wide range of project characteristics – including multiple dimensions in functional requirements, non-functional requirements (NFRs), and team characteristics – that impact that choice. This paper addresses both sources of confusion by utilizing case studies from 22 interviews of enterprise software development leaders. The paper analyzes each case utilizing a “home grounds” model that graphically portrays key project characteristics and their impact on the optimal choice of software development project approach

    Correlating Architecture Maturity and Enterprise Systems Usage Maturity to Improve Business/IT Alignment

    Get PDF
    This paper compares concepts of maturity models in the areas of Enterprise Architecture and Enterprise Systems Usage. We investigate whether these concepts correlate, overlap and explain each other. The two maturity models are applied in a case study. We conclude that although it is possible to fully relate constructs from both kinds of models, having a mature architecture function in a company does not imply a high Enterprise Systems Usage maturity

    Identifying critical success factors of ERP systems at the higher education sector

    Get PDF
    In response to a range of contextual drivers, the worldwide adoption of ERP Systems in Higher Education Institutions (HEIs) has increased substantially over the past decade. Though the difficulties and high failure rate in implementing ERP systems at university environments have been cited in the literature, research on critical success factors (CSFs) for ERP implementations in this context is rare and fragmented. This paper is part of a larger research effort that aims to contribute to understanding the phenomenon of ERP implementations and evaluations in HEIs in the Australasian region; it identifies, previously reported, critical success factors (CSFs) in relation to ERP system implementations and discusses the importance of these factors

    Complexity in the Context of Information Systems Project Management

    Get PDF
    Complexity is an inherent attribute of any project. The purpose of defining and documenting complexity is to enable a project team to foresee resulting challenges in a timely manner, and take steps to alleviate them.The main contribution of this article is to present a systematic view of complexity in project management by identifying its key attributes and classifying complexity by these attributes. A “complexity taxonomy” is developed and discussed within three levels: the product, the project and the external environment.Complexity types are described through simple real-life examples. Then a framework (tool) is developed for applying the notion of complexity as an early warning tool.The article is intended for researchers in complexity, project management, information systems, technology solutions and business management, and also for information specialists, project managers, program managers, financial staff and technology directors

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. • common and shared understanding in requirements engineering efforts, • continuous improvement, • outputs of requirement engineering • reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future
    • …
    corecore