8,276 research outputs found

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Modelling Requirements for Content Recommendation Systems

    Full text link
    This paper addresses the modelling of requirements for a content Recommendation System (RS) for Online Social Networks (OSNs). On OSNs, a user switches roles constantly between content generator and content receiver. The goals and softgoals are different when the user is generating a post, as opposed as replying to a post. In other words, the user is generating instances of different entities, depending on the role she has: a generator generates instances of a "post", while the receiver generates instances of a "reply". Therefore, we believe that when addressing Requirements Engineering (RE) for RS, it is necessary to distinguish these roles clearly. We aim to model an essential dynamic on OSN, namely that when a user creates (posts) content, other users can ignore that content, or themselves start generating new content in reply, or react to the initial posting. This dynamic is key to designing OSNs, because it influences how active users are, and how attractive the OSN is for existing, and to new users. We apply a well-known Goal Oriented RE (GORE) technique, namely i-star, and show that this language fails to capture this dynamic, and thus cannot be used alone to model the problem domain. Hence, in order to represent this dynamic, its relationships to other OSNs' requirements, and to capture all relevant information, we suggest using another modelling language, namely Petri Nets, on top of i-star for the modelling of the problem domain. We use Petri Nets because it is a tool that is used to simulate the dynamic and concurrent activities of a system and can be used by both practitioners and theoreticians.Comment: 28 pages, 7 figure
    corecore