481,558 research outputs found

    Children’s information retrieval: beyond examining search strategies and interfaces

    Get PDF
    The study of children’s information retrieval is still for the greater part untouched territory. Meanwhile, children can become lost in the digital information world, because they are confronted with search interfaces, both designed by and for adults. Most current research on children’s information retrieval focuses on examining children’s search performance on existing search interfaces to determine what kind of interfaces are suitable for children’s search behaviour. However, to discover the true nature of children’s search behaviour, we state that research has to go beyond examining search strategies used with existing search interfaces by examining children’s cognitive processes during information-seeking. A paradigm of children’s information retrieval should provide an overview of all the components beyond search interfaces and search strategies that are part of children’s information retrieval process. Better understanding of the nature of children’s search behaviour can help adults design interfaces and information retrieval systems that both support children’s natural search strategies and help them find their way in the digital information world

    Particles adsorbed at various non-aqueous liquid-liquid interfaces

    Get PDF
    Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces. Nanocomposites of non-aqueous immiscible polymer blends containing inorganic particles at the interface are of great interest industrially and consequently more work has been devoted to them. By contrast, the behaviour of particles adsorbed at oil-oil interfaces in which both oils are immiscible and of low dielectric constant (Δ < 3) is scarcely studied. Hydrophobic particles are required to stabilise these oil-oil emulsions due to their irreversible adsorption, high interfacial activity and elastic shell behaviour

    Understanding customers' holistic perception of switches in automotive human–machine interfaces

    Get PDF
    For successful new product development, it is necessary to understand the customers' holistic experience of the product beyond traditional task completion, and acceptance measures. This paper describes research in which ninety-eight UK owners of luxury saloons assessed the feel of push-switches in five luxury saloon cars both in context (in-car) and out of context (on a bench). A combination of hedonic data (i.e. a measure of ‘liking’), qualitative data and semantic differential data was collected. It was found that customers are clearly able to differentiate between switches based on the degree of liking for the samples' perceived haptic qualities, and that the assessment environment had a statistically significant effect, but that it was not universal. A factor analysis has shown that perceived characteristics of switch haptics can be explained by three independent factors defined as ‘Image’, ‘Build Quality’, and ‘Clickiness’. Preliminary steps have also been taken towards identifying whether existing theoretical frameworks for user experience may be applicable to automotive human–machine interfaces

    Driven interfaces in disordered media: determination of universality classes from experimental data

    Full text link
    While there have been important theoretical advances in understanding the universality classes of interfaces moving in porous media, the developed tools cannot be directly applied to experiments. Here we introduce a method that can identify the universality class from snapshots of the interface profile. We test the method on discrete models whose universality class is well known, and use it to identify the universality class of interfaces obtained in experiments on fluid flow in porous media.Comment: 4 pages, 5 figure

    A global study of enhanced stretching and diffusion in chaotic tangles

    Get PDF
    A global, finite-time study is made of stretching and diffusion in a class of chaotic tangles associated with fluids described by periodically forced two-dimensional dynamical systems. Invariant lobe structures formed by intersecting global stable and unstable manifolds of persisting invariant hyperbolic sets provide the geometrical framework for studying stretching of interfaces and diffusion of passive scalars across these interfaces. In particular, the present study focuses on the material curve that initially lies on the unstable manifold segment of the boundary of the entraining turnstile lobe.A knowledge of the stretch profile of a corresponding curve that evolves according to the unperturbed flow, coupled with an appreciation of a symbolic dynamics that applies to the entire original material curve in the perturbed flow, provides the framework for understanding the mechanism for, and topology of, enhanced stretching in chaotic tangles. Secondary intersection points (SIP's) of the stable and unstable manifolds are particularly relevant to the topology, and the perturbed stretch profile is understood in terms of the unperturbed stretch profile approximately repeating itself on smaller and smaller scales. For sufficiently thin diffusion zones, diffusion of passive scalars across interfaces can be treated as a one-dimensional process, and diffusion rates across interfaces are directly related to the stretch history of the interface.An understanding of interface stretching thus directly translates to an understanding of diffusion across interfaces. However, a notable exception to the thin diffusion zone approximation occurs when an interface folds on top of itself so that neighboring diffusion zones overlap. An analysis which takes into account the overlap of nearest neighbor diffusion zones is presented, which is sufficient to capture new phenomena relevant to efficiency of mixing. The analysis adds to the concentration profile a saturation term that depends on the distance between neighboring segments of the interface. Efficiency of diffusion thus depends not only on efficiency of stretching along the interface, but on how this stretching is distributed relative to the distance between neighboring segments of the interface
    • 

    corecore