3 research outputs found

    A three-dimensional discontinuous galerkin time-domain finite element method for electromagnetic modeling of wireless power transfer coils

    Get PDF
    ABSTRACT: Inductive coupling based wireless power transfer (WPT) is a popular short-range power delivery mechanism for many industrial, biomedical, and home electronic appliances applications. A numerical methodology is needed for the analysis of the electromagnetic propagation, radiation, scattering and coupling of highly efficient WPT systems. This study is based on the discontinuous Galerkin time-domain (DGTD) finite element method. A brief survey of the DGTD method is given, which is a finite element method using discontinuous piecewise polynomials as basis functions and numerical fluxes based on up-winding for stability. DGTD method is characterized by the fact that no continuity is enforced between the elements, then it is easy to parallelize and results in fast solvers. Even though the finite element method is used by a few researchers to study WPT problems, we found no study using the DGTD method to study WPT problems, which is surprising given that this discretization technique seems particularly well suited for these problems. A design of two coils at the frequency of 3 MHz is introduced, and the effects of the distance and misalignment between two coils on the mutual coupling are studied. The numerical results are validated by experimental and analytical results

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore