112,820 research outputs found

    Integration of cost-risk assessment of denial of service within an intelligent maintenance system

    Get PDF
    As organisations become richer in data the function of asset management will have to increasingly use intelligent systems to control condition monitoring systems and organise maintenance. In the future the UK rail industry is anticipating having to optimize capacity by running trains closer to each other. In this situation maintenance becomes extremely problematic as within such a high-performance network a relatively minor fault will impact more trains and passengers; such denial of service causes reputational damage for the industry and causes fines to be levied against the infrastructure owner, Network Rail. Intelligent systems used to control condition monitoring systems will need to optimize for several factors; optimization for minimizing denial of service will be one such factor. With schedules anticipated to be increasingly complicated detailed estimation methods will be extremely difficult to implement. Cost prediction of maintenance activities tend to be expert driven and require extensive details, making automation of such an activity difficult. Therefore a stochastic process will be needed to approach the problem of predicting the denial of service arising from any required maintenance. Good uncertainty modelling will help to increase the confidence of estimates. This paper seeks to detail the challenges that the UK Railway industry face with regards to cost modelling of maintenance activities and outline an example of a suitable cost model for quantifying cost uncertainty. The proposed uncertainty quantification is based on historical cost data and interpretation of its statistical distributions. These estimates are then integrated in a cost model to obtain accurate uncertainty measurements of outputs through Monte-Carlo simulation methods. An additional criteria of the model was that it be suitable for integration into an existing prototype integrated intelligent maintenance system. It is anticipated that applying an integrated maintenance management system will apply significant downward pressure on maintenance budgets and reduce denial of service. Accurate cost estimation is therefore of great importance if anticipated cost efficiencies are to be achieved. While the rail industry has been the focus of this work, other industries have been considered and it is anticipated that the approach will be applicable to many other organisations across several asset management intensive industrie

    Surrogate modelling for reliability assessment of cutting tools

    Get PDF
    Currently, cutting tool life for machining operations is correlated to process parameters through the widely applied Taylor functions. The latter are valuable expressions in established practice however their generalised nature does not allow accurate prediction of the tool’s service life or optimization of the manufacturing process due to effects of uncertainties in various input variables. These variables should be treated in a stochastic way in order to avoid employment of safety factors for quantification of uncertainty. This paper documents a procedure that allows derivation of analytical expressions for cutting tools performance employing advanced approximation methods and concepts of reliability analysis. Due to the complexity of manufacturing processes surrogate modelling (SM) methods are applied, starting from a few sample points obtained through lab or soft experiments and extending them to models able to predict/estimate the values of control values/indicators as a function of the key design variables, often referred to as limit states

    The value of carbon sequestration and storage in coastal habitats

    Get PDF
    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000–2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000–2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000–2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined

    Data driven quantification of the temporal scope of building LCAs

    Get PDF
    In the construction sector, LCAs typically apply an approach based on fixed or partially fixed building lifespans/service lives/reference study period. The temporal scopes applied in building LCAs are hence typically not reflecting that the timeframes buildings can provide the service they are intended to provide, are (highly) dependent on numerous factors e.g.: building location, materials used to construct the building, energy supply and the use of the building. Inaccurate estimation of the temporal scope of a building LCA will lead to incorrect quantification of the environmental impacts of buildings. Incorrect quantification of the environmental performance of buildings may, in the worst case, derange/decelerate the development within the building sector towards more sustainable buildings. In this paper, a data set consisting of 20999 Danish buildings, demolished between 2009 and 2015, is analyzed. A multiple linear regression model is derived and used to quantify the temporal scope (often referred to as the reference study period) of building LCAs in an attempt to improve the accuracy of sustainability assessment of buildings, taking several influencing factors into account. The results obtained from the derived model are subsequently compared with several fixed/partially fixed building lifespan/service life/reference study period quantification approaches The regression model proved to estimate the lifespan with lower errors (compared to observed values) than the prevailing approach relying on a single fixed value for all building locations, uses and building materials. The application of model based site, use, and/or material specific etc. temporal scope quantification in LCA is new and provides a mean to reduce the uncertainty of LCA results; however, the approach needs to be formalized

    Uncertainty quantification of leakages in a multistage simulation and comparison with experiments

    Get PDF
    The present paper presents a numerical study of the impact of tip gap uncertainties in a multistage turbine. It is well known that the rotor gap can change the gas turbine efficiency but the impact of the random variation of the clearance height has not been investigated before. In this paper the radial seals clearance of a datum shroud geometry, representative of steam turbine industrial practice, was systematically varied and numerically tested. By using a Non-Intrusive Uncertainty Quantification simulation based on a Sparse Arbitrary Moment Based Approach, it is possible to predict the radial distribution of uncertainty in stagnation pressure and yaw angle at the exit of the turbine blades. This work shows that the impact of gap uncertainties propagates radially from the tip towards the hub of the turbine and the complete span is affected by a variation of the rotor tip gap. This amplification of the uncertainty is mainly due to the low aspect ratio of the turbine and a similar behavior is expected in high pressure turbines

    The Impact of Reprovisioning on the Choice of Shared versus Dedicated Networks

    Get PDF
    As new network services emerge, questions about service deployment and network choices arise. Although shared networks, such as the Internet, offer many advantages, combining heterogeneous services on the same network need not be the right answer as it comes at the cost of increased complexity. Moreover, deploying new services on dedicated networks is becoming increasingly viable, thanks to virtualization technologies. In this work, we introduce an analytical framework that gives Internet Service Providers the ability to explore the trade-offs between shared and dedicated network infrastructures. The framework accounts for factors such as the presence of demand uncertainty for new services, (dis)economies of scope in deployment and operational costs, and the extent to which new technologies allow dynamic (re)provisioning of resources in response to excess demands. The main contribution is the identification and quantification of dynamic (re)provisioning as a key factor in determining the preferred network infrastructure, i.e. shared or dedicated
    • …
    corecore