2,356 research outputs found

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    Non-line-of-sight Node Localization based on Semi-Definite Programming in Wireless Sensor Networks

    Full text link
    An unknown-position sensor can be localized if there are three or more anchors making time-of-arrival (TOA) measurements of a signal from it. However, the location errors can be very large due to the fact that some of the measurements are from non-line-of-sight (NLOS) paths. In this paper, we propose a semi-definite programming (SDP) based node localization algorithm in NLOS environment for ultra-wideband (UWB) wireless sensor networks. The positions of sensors can be estimated using the distance estimates from location-aware anchors as well as other sensors. However, in the absence of LOS paths, e.g., in indoor networks, the NLOS range estimates can be significantly biased. As a result, the NLOS error can remarkably decrease the location accuracy. And it is not easy to efficiently distinguish LOS from NLOS measurements. In this paper, an algorithm is proposed that achieves high location accuracy without the need of identifying NLOS and LOS measurement.Comment: submitted to IEEE ICC'1

    MIMO Detection for High-Order QAM Based on a Gaussian Tree Approximation

    Full text link
    This paper proposes a new detection algorithm for MIMO communication systems employing high order QAM constellations. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, a straightforward application of the Belief Propagation (BP) algorithm yields very poor results. Our algorithm is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. The finite-set constraint is then applied to obtain a loop-free discrete distribution. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the loop-free factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection
    • …
    corecore