1,614 research outputs found

    Astronomical Data Analysis and Sparsity: from Wavelets to Compressed Sensing

    Get PDF
    Wavelets have been used extensively for several years now in astronomy for many purposes, ranging from data filtering and deconvolution, to star and galaxy detection or cosmic ray removal. More recent sparse representations such ridgelets or curvelets have also been proposed for the detection of anisotropic features such cosmic strings in the cosmic microwave background. We review in this paper a range of methods based on sparsity that have been proposed for astronomical data analysis. We also discuss what is the impact of Compressed Sensing, the new sampling theory, in astronomy for collecting the data, transferring them to the earth or reconstructing an image from incomplete measurements.Comment: Submitted. Full paper will figures available at http://jstarck.free.fr/IEEE09_SparseAstro.pd

    Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

    Get PDF
    We develop a robust uncertainty principle for finite signals in C^N which states that for almost all subsets T,W of {0,...,N-1} such that |T|+|W| ~ (log N)^(-1/2) N, there is no sigal f supported on T whose discrete Fourier transform is supported on W. In fact, we can make the above uncertainty principle quantitative in the sense that if f is supported on T, then only a small percentage of the energy (less than half, say) of its Fourier transform is concentrated on W. As an application of this robust uncertainty principle (QRUP), we consider the problem of decomposing a signal into a sparse superposition of spikes and complex sinusoids. We show that if a generic signal f has a decomposition using spike and frequency locations in T and W respectively, and obeying |T| + |W| <= C (\log N)^{-1/2} N, then this is the unique sparsest possible decomposition (all other decompositions have more non-zero terms). In addition, if |T| + |W| <= C (\log N)^{-1} N, then this sparsest decomposition can be found by solving a convex optimization problem.Comment: 25 pages, 9 figure

    Sparsity and Incoherence in Compressive Sampling

    Get PDF
    We consider the problem of reconstructing a sparse signal x0Rnx^0\in\R^n from a limited number of linear measurements. Given mm randomly selected samples of Ux0U x^0, where UU is an orthonormal matrix, we show that 1\ell_1 minimization recovers x0x^0 exactly when the number of measurements exceeds mConstμ2(U)Slogn, m\geq \mathrm{Const}\cdot\mu^2(U)\cdot S\cdot\log n, where SS is the number of nonzero components in x0x^0, and μ\mu is the largest entry in UU properly normalized: μ(U)=nmaxk,jUk,j\mu(U) = \sqrt{n} \cdot \max_{k,j} |U_{k,j}|. The smaller μ\mu, the fewer samples needed. The result holds for ``most'' sparse signals x0x^0 supported on a fixed (but arbitrary) set TT. Given TT, if the sign of x0x^0 for each nonzero entry on TT and the observed values of Ux0Ux^0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples

    Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting

    Full text link
    High-resolution three-dimensional (3D) cardiovascular magnetic resonance (CMR) is a valuable medical imaging technique, but its widespread application in clinical practice is hampered by long acquisition times. Here we present a novel compressed sensing (CS) reconstruction approach using shearlets as a sparsifying transform allowing for fast 3D CMR (3DShearCS). Shearlets are mathematically optimal for a simplified model of natural images and have been proven to be more efficient than classical systems such as wavelets. Data is acquired with a 3D Radial Phase Encoding (RPE) trajectory and an iterative reweighting scheme is used during image reconstruction to ensure fast convergence and high image quality. In our in-vivo cardiac MRI experiments we show that the proposed method 3DShearCS has lower relative errors and higher structural similarity compared to the other reconstruction techniques especially for high undersampling factors, i.e. short scan times. In this paper, we further show that 3DShearCS provides improved depiction of cardiac anatomy (measured by assessing the sharpness of coronary arteries) and two clinical experts qualitatively analyzed the image quality

    Compressive Earth Observatory: An Insight from AIRS/AMSU Retrievals

    Full text link
    We demonstrate that the global fields of temperature, humidity and geopotential heights admit a nearly sparse representation in the wavelet domain, offering a viable path forward to explore new paradigms of sparsity-promoting data assimilation and compressive recovery of land surface-atmospheric states from space. We illustrate this idea using retrieval products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) on board the Aqua satellite. The results reveal that the sparsity of the fields of temperature is relatively pressure-independent while atmospheric humidity and geopotential heights are typically sparser at lower and higher pressure levels, respectively. We provide evidence that these land-atmospheric states can be accurately estimated using a small set of measurements by taking advantage of their sparsity prior.Comment: 12 pages, 8 figures, 1 tabl
    corecore