6,911 research outputs found

    Multi-Agent Reachability Calibration with Conformal Prediction

    Full text link
    We investigate methods to provide safety assurances for autonomous agents that incorporate predictions of other, uncontrolled agents' behavior into their own trajectory planning. Given a learning-based forecasting model that predicts agents' trajectories, we introduce a method for providing probabilistic assurances on the model's prediction error with calibrated confidence intervals. Through quantile regression, conformal prediction, and reachability analysis, our method generates probabilistically safe and dynamically feasible prediction sets. We showcase their utility in certifying the safety of planning algorithms, both in simulations using actual autonomous driving data and in an experiment with Boeing vehicles

    Conformal Policy Learning for Sensorimotor Control Under Distribution Shifts

    Full text link
    This paper focuses on the problem of detecting and reacting to changes in the distribution of a sensorimotor controller's observables. The key idea is the design of switching policies that can take conformal quantiles as input, which we define as conformal policy learning, that allows robots to detect distribution shifts with formal statistical guarantees. We show how to design such policies by using conformal quantiles to switch between base policies with different characteristics, e.g. safety or speed, or directly augmenting a policy observation with a quantile and training it with reinforcement learning. Theoretically, we show that such policies achieve the formal convergence guarantees in finite time. In addition, we thoroughly evaluate their advantages and limitations on two compelling use cases: simulated autonomous driving and active perception with a physical quadruped. Empirical results demonstrate that our approach outperforms five baselines. It is also the simplest of the baseline strategies besides one ablation. Being easy to use, flexible, and with formal guarantees, our work demonstrates how conformal prediction can be an effective tool for sensorimotor learning under uncertainty.Comment: Conformal Policy Learnin

    How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review

    Full text link
    Context: Machine Learning (ML) has been at the heart of many innovations over the past years. However, including it in so-called 'safety-critical' systems such as automotive or aeronautic has proven to be very challenging, since the shift in paradigm that ML brings completely changes traditional certification approaches. Objective: This paper aims to elucidate challenges related to the certification of ML-based safety-critical systems, as well as the solutions that are proposed in the literature to tackle them, answering the question 'How to Certify Machine Learning Based Safety-critical Systems?'. Method: We conduct a Systematic Literature Review (SLR) of research papers published between 2015 to 2020, covering topics related to the certification of ML systems. In total, we identified 217 papers covering topics considered to be the main pillars of ML certification: Robustness, Uncertainty, Explainability, Verification, Safe Reinforcement Learning, and Direct Certification. We analyzed the main trends and problems of each sub-field and provided summaries of the papers extracted. Results: The SLR results highlighted the enthusiasm of the community for this subject, as well as the lack of diversity in terms of datasets and type of models. It also emphasized the need to further develop connections between academia and industries to deepen the domain study. Finally, it also illustrated the necessity to build connections between the above mention main pillars that are for now mainly studied separately. Conclusion: We highlighted current efforts deployed to enable the certification of ML based software systems, and discuss some future research directions.Comment: 60 pages (92 pages with references and complements), submitted to a journal (Automated Software Engineering). Changes: Emphasizing difference traditional software engineering / ML approach. Adding Related Works, Threats to Validity and Complementary Materials. Adding a table listing papers reference for each section/subsection

    Safe Planning in Dynamic Environments using Conformal Prediction

    Full text link
    We propose a framework for planning in unknown dynamic environments with probabilistic safety guarantees using conformal prediction. Particularly, we design a model predictive controller (MPC) that uses i) trajectory predictions of the dynamic environment, and ii) prediction regions quantifying the uncertainty of the predictions. To obtain prediction regions, we use conformal prediction, a statistical tool for uncertainty quantification, that requires availability of offline trajectory data - a reasonable assumption in many applications such as autonomous driving. The prediction regions are valid, i.e., they hold with a user-defined probability, so that the MPC is provably safe. We illustrate the results in the self-driving car simulator CARLA at a pedestrian-filled intersection. The strength of our approach is compatibility with state of the art trajectory predictors, e.g., RNNs and LSTMs, while making no assumptions on the underlying trajectory-generating distribution. To the best of our knowledge, these are the first results that provide valid safety guarantees in such a setting

    GAS: Generating Fast and Accurate Surrogate Models for Autonomous Vehicle Systems

    Full text link
    Modern autonomous vehicle systems use complex perception and control components. These components can rapidly change during development of such systems, requiring constant re-testing. Unfortunately, high-fidelity simulations of these complex systems for evaluating vehicle safety are costly. The complexity also hinders the creation of less computationally intensive surrogate models. We present GAS, the first approach for creating surrogate models of complete (perception, control, and dynamics) autonomous vehicle systems containing complex perception and/or control components. GAS's two-stage approach first replaces complex perception components with a perception model. Then, GAS constructs a polynomial surrogate model of the complete vehicle system using Generalized Polynomial Chaos (GPC). We demonstrate the use of these surrogate models in two applications. First, we estimate the probability that the vehicle will enter an unsafe state over time. Second, we perform global sensitivity analysis of the vehicle system with respect to its state in a previous time step. GAS's approach also allows for reuse of the perception model when vehicle control and dynamics characteristics are altered during vehicle development, saving significant time. We consider five scenarios concerning crop management vehicles that must not crash into adjacent crops, self driving cars that must stay within their lane, and unmanned aircraft that must avoid collision. Each of the systems in these scenarios contain a complex perception or control component. Using GAS, we generate surrogate models for these systems, and evaluate the generated models in the applications described above. GAS's surrogate models provide an average speedup of 3.7×3.7\times for safe state probability estimation (minimum 2.1×2.1\times) and 1.4×1.4\times for sensitivity analysis (minimum 1.3×1.3\times), while still maintaining high accuracy

    Bayesian Learning-Based Adaptive Control for Safety Critical Systems

    Full text link
    Deep learning has enjoyed much recent success, and applying state-of-the-art model learning methods to controls is an exciting prospect. However, there is a strong reluctance to use these methods on safety-critical systems, which have constraints on safety, stability, and real-time performance. We propose a framework which satisfies these constraints while allowing the use of deep neural networks for learning model uncertainties. Central to our method is the use of Bayesian model learning, which provides an avenue for maintaining appropriate degrees of caution in the face of the unknown. In the proposed approach, we develop an adaptive control framework leveraging the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs (Control Barrier Functions) along with tractable Bayesian model learning via Gaussian Processes or Bayesian neural networks. Under reasonable assumptions, we guarantee stability and safety while adapting to unknown dynamics with probability 1. We demonstrate this architecture for high-speed terrestrial mobility targeting potential applications in safety-critical high-speed Mars rover missions.Comment: Corrected an error in section II, where previously the problem was introduced in a non-stochastic setting and wrongly assumed the solution to an ODE with Gaussian distributed parametric uncertainty was equivalent to an SDE with a learned diffusion term. See Lew, T et al. "On the Problem of Reformulating Systems with Uncertain Dynamics as a Stochastic Differential Equation

    Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks

    Full text link
    Uncertainty quantification (UQ) is important for reliability assessment and enhancement of machine learning models. In deep learning, uncertainties arise not only from data, but also from the training procedure that often injects substantial noises and biases. These hinder the attainment of statistical guarantees and, moreover, impose computational challenges on UQ due to the need for repeated network retraining. Building upon the recent neural tangent kernel theory, we create statistically guaranteed schemes to principally \emph{quantify}, and \emph{remove}, the procedural uncertainty of over-parameterized neural networks with very low computation effort. In particular, our approach, based on what we call a procedural-noise-correcting (PNC) predictor, removes the procedural uncertainty by using only \emph{one} auxiliary network that is trained on a suitably labeled data set, instead of many retrained networks employed in deep ensembles. Moreover, by combining our PNC predictor with suitable light-computation resampling methods, we build several approaches to construct asymptotically exact-coverage confidence intervals using as low as four trained networks without additional overheads
    • …
    corecore