182,510 research outputs found

    Collaborative assessment of information provider's reliability and expertise using subjective logic

    Get PDF
    Q&A social media have gained a lot of attention during the recent years. People rely on these sites to obtain information due to a number of advantages they offer as compared to conventional sources of knowledge (e.g., asynchronous and convenient access). However, for the same question one may find highly contradicting answers, causing an ambiguity with respect to the correct information. This can be attributed to the presence of unreliable and/or non-expert users. These two attributes (reliability and expertise) significantly affect the quality of the answer/information provided. We present a novel approach for estimating these user's characteristics relying on human cognitive traits. In brief, we propose each user to monitor the activity of her peers (on the basis of responses to questions asked by her) and observe their compliance with predefined cognitive models. These observations lead to local assessments that can be further fused to obtain a reliability and expertise consensus for every other user in the social network (SN). For the aggregation part we use subjective logic. To the best of our knowledge this is the first study of this kind in the context of Q&A SN. Our proposed approach is highly distributed; each user can individually estimate the expertise and the reliability of her peers using her direct interactions with them and our framework. The online SN (OSN), which can be considered as a distributed database, performs continuous data aggregation for users expertise and reliability assessment in order to reach a consensus. We emulate a Q&A SN to examine various performance aspects of our algorithm (e.g., convergence time, responsiveness etc.). Our evaluations indicate that it can accurately assess the reliability and the expertise of a user with a small number of samples and can successfully react to the latter's behavior change, provided that the cognitive traits hold in practice. © 2011 ICST

    A Cognitive-based scheme for user reliability and expertise assessment in Q&A social networks

    Get PDF
    Q&A social media has gained a great deal of attention during recent years. People rely on these sites to obtain information due to the number of advantages they offer as compared to conventional sources of knowledge (e.g., asynchronous and convenient access). However, for the same question one may find highly contradictory answers, causing ambiguity with respect to the correct information. This can be attributed to the presence of unreliable and/or non-expert users. In this work, we propose a novel approach for estimating the reliability and expertise of a user based on human cognitive traits. Every user can individually estimate these values based on local pairwise interactions. We examine the convergence performance of our algorithm and we find that it can accurately assess the reliability and the expertise of a user and can successfully react to the latter's behavior change. © 2011 IEEE

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs
    corecore