87 research outputs found

    Unbounded High Dynamic Range Photography Using a Modulo Camera

    Get PDF
    This paper presents a novel framework to extend the dynamic range of images called Unbounded High Dynamic Range (UHDR) photography with a modulo camera. A modulo camera could theoretically take unbounded radiance levels by keeping only the least significant bits. We show that with limited bit depth, very high radiance levels can be recovered from a single modulus image with our newly proposed unwrapping algorithm for natural images. We can also obtain an HDR image with details equally well preserved for all radiance levels by merging the least number of modulus images. Synthetic experiment and experiment with a real modulo camera show the effectiveness of the proposed approach.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002)SUTD-MIT (Joint Doctoral Fellowship

    Robust Multi-Image HDR Reconstruction for the Modulo Camera

    Full text link
    Photographing scenes with high dynamic range (HDR) poses great challenges to consumer cameras with their limited sensor bit depth. To address this, Zhao et al. recently proposed a novel sensor concept - the modulo camera - which captures the least significant bits of the recorded scene instead of going into saturation. Similar to conventional pipelines, HDR images can be reconstructed from multiple exposures, but significantly fewer images are needed than with a typical saturating sensor. While the concept is appealing, we show that the original reconstruction approach assumes noise-free measurements and quickly breaks down otherwise. To address this, we propose a novel reconstruction algorithm that is robust to image noise and produces significantly fewer artifacts. We theoretically analyze correctness as well as limitations, and show that our approach significantly outperforms the baseline on real data.Comment: to appear at the 39th German Conference on Pattern Recognition (GCPR) 201

    Reconstruction from Periodic Nonlinearities, With Applications to HDR Imaging

    Full text link
    We consider the problem of reconstructing signals and images from periodic nonlinearities. For such problems, we design a measurement scheme that supports efficient reconstruction; moreover, our method can be adapted to extend to compressive sensing-based signal and image acquisition systems. Our techniques can be potentially useful for reducing the measurement complexity of high dynamic range (HDR) imaging systems, with little loss in reconstruction quality. Several numerical experiments on real data demonstrate the effectiveness of our approach

    MantissaCam: Learning Snapshot High-dynamic-range Imaging with Perceptually-based In-pixel Irradiance Encoding

    Full text link
    The ability to image high-dynamic-range (HDR) scenes is crucial in many computer vision applications. The dynamic range of conventional sensors, however, is fundamentally limited by their well capacity, resulting in saturation of bright scene parts. To overcome this limitation, emerging sensors offer in-pixel processing capabilities to encode the incident irradiance. Among the most promising encoding schemes is modulo wrapping, which results in a computational photography problem where the HDR scene is computed by an irradiance unwrapping algorithm from the wrapped low-dynamic-range (LDR) sensor image. Here, we design a neural network--based algorithm that outperforms previous irradiance unwrapping methods and, more importantly, we design a perceptually inspired "mantissa" encoding scheme that more efficiently wraps an HDR scene into an LDR sensor. Combined with our reconstruction framework, MantissaCam achieves state-of-the-art results among modulo-type snapshot HDR imaging approaches. We demonstrate the efficacy of our method in simulation and show preliminary results of a prototype MantissaCam implemented with a programmable sensor

    Snapshot High Dynamic Range Imaging with a Polarization Camera

    Full text link
    High dynamic range (HDR) images are important for a range of tasks, from navigation to consumer photography. Accordingly, a host of specialized HDR sensors have been developed, the most successful of which are based on capturing variable per-pixel exposures. In essence, these methods capture an entire exposure bracket sequence at once in a single shot. This paper presents a straightforward but highly effective approach for turning an off-the-shelf polarization camera into a high-performance HDR camera. By placing a linear polarizer in front of the polarization camera, we are able to simultaneously capture four images with varied exposures, which are determined by the orientation of the polarizer. We develop an outlier-robust and self-calibrating algorithm to reconstruct an HDR image (at a single polarity) from these measurements. Finally, we demonstrate the efficacy of our approach with extensive real-world experiments.Comment: 9 pages, 10 figure

    Stable Recovery Of Sparse Vectors From Random Sinusoidal Feature Maps

    Full text link
    Random sinusoidal features are a popular approach for speeding up kernel-based inference in large datasets. Prior to the inference stage, the approach suggests performing dimensionality reduction by first multiplying each data vector by a random Gaussian matrix, and then computing an element-wise sinusoid. Theoretical analysis shows that collecting a sufficient number of such features can be reliably used for subsequent inference in kernel classification and regression. In this work, we demonstrate that with a mild increase in the dimension of the embedding, it is also possible to reconstruct the data vector from such random sinusoidal features, provided that the underlying data is sparse enough. In particular, we propose a numerically stable algorithm for reconstructing the data vector given the nonlinear features, and analyze its sample complexity. Our algorithm can be extended to other types of structured inverse problems, such as demixing a pair of sparse (but incoherent) vectors. We support the efficacy of our approach via numerical experiments

    Modulation For Modulo: A Sampling-Efficient High-Dynamic Range ADC

    Full text link
    In high-dynamic range (HDR) analog-to-digital converters (ADCs), having many quantization bits minimizes quantization errors but results in high bit rates, limiting their application scope. A strategy combining modulo-folding with a low-DR ADC can create an efficient HDR-ADC with fewer bits. However, this typically demands oversampling, increasing the overall bit rate. An alternative method using phase modulation (PM) achieves HDR-ADC functionality by modulating the phase of a carrier signal with the analog input. This allows a low-DR ADC with fewer bits. We've derived identifiability results enabling reconstruction of the original signal from PM samples acquired at the Nyquist rate, adaptable to various signals and non-uniform sampling. Using discrete phase demodulation algorithms for practical implementation, our PM-based approach doesn't require oversampling in noise-free conditions, contrasting with modulo-based ADCs. With noise, our PM-based HDR method demonstrates efficiency with lower reconstruction errors and reduced sampling rates. Our hardware prototype illustrates reconstructing signals ten times greater than the ADC's DR from Nyquist rate samples, potentially replacing high-bit rate HDR-ADCs while meeting existing bit rate needs.Comment: 12 Pages, 13 Figure
    • …
    corecore