2,012 research outputs found

    Unbiased scalable softmax optimization

    Full text link
    Recent neural network and language models rely on softmax distributions with an extremely large number of categories. Since calculating the softmax normalizing constant in this context is prohibitively expensive, there is a growing literature of efficiently computable but biased estimates of the softmax. In this paper we propose the first unbiased algorithms for maximizing the softmax likelihood whose work per iteration is independent of the number of classes and datapoints (and no extra work is required at the end of each epoch). We show that our proposed unbiased methods comprehensively outperform the state-of-the-art on seven real world datasets

    Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator

    Full text link
    Semantic hashing has become a crucial component of fast similarity search in many large-scale information retrieval systems, in particular, for text data. Variational auto-encoders (VAEs) with binary latent variables as hashing codes provide state-of-the-art performance in terms of precision for document retrieval. We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing. Instead of solving the optimization relying on existing biased gradient estimators, an unbiased low-variance gradient estimator is adopted to optimize the hashing function by evaluating the non-differentiable loss function over two correlated sets of binary hashing codes to control the variance of gradient estimates. This new semantic hashing framework achieves superior performance compared to the state-of-the-arts, as demonstrated by our comprehensive experiments.Comment: To appear in UAI 202

    ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables

    Full text link
    To address the challenge of backpropagating the gradient through categorical variables, we propose the augment-REINFORCE-swap-merge (ARSM) gradient estimator that is unbiased and has low variance. ARSM first uses variable augmentation, REINFORCE, and Rao-Blackwellization to re-express the gradient as an expectation under the Dirichlet distribution, then uses variable swapping to construct differently expressed but equivalent expectations, and finally shares common random numbers between these expectations to achieve significant variance reduction. Experimental results show ARSM closely resembles the performance of the true gradient for optimization in univariate settings; outperforms existing estimators by a large margin when applied to categorical variational auto-encoders; and provides a "try-and-see self-critic" variance reduction method for discrete-action policy gradient, which removes the need of estimating baselines by generating a random number of pseudo actions and estimating their action-value functions.Comment: Published in ICML 2019. We have updated Section 4.2 and the Appendix to reflect the improvements brought by fixing some bugs hidden in our original code. Please find the Errata in the authors' websites and check the updated code in Githu

    Bayesian Incremental Learning for Deep Neural Networks

    Full text link
    In industrial machine learning pipelines, data often arrive in parts. Particularly in the case of deep neural networks, it may be too expensive to train the model from scratch each time, so one would rather use a previously learned model and the new data to improve performance. However, deep neural networks are prone to getting stuck in a suboptimal solution when trained on only new data as compared to the full dataset. Our work focuses on a continuous learning setup where the task is always the same and new parts of data arrive sequentially. We apply a Bayesian approach to update the posterior approximation with each new piece of data and find this method to outperform the traditional approach in our experiments

    Efficient variational Bayesian neural network ensembles for outlier detection

    Full text link
    In this work we perform outlier detection using ensembles of neural networks obtained by variational approximation of the posterior in a Bayesian neural network setting. The variational parameters are obtained by sampling from the true posterior by gradient descent. We show our outlier detection results are comparable to those obtained using other efficient ensembling methods.Comment: Presented at Workshop track - ICLR 201

    ADMM-SOFTMAX : An ADMM Approach for Multinomial Logistic Regression

    Full text link
    We present ADMM-Softmax, an alternating direction method of multipliers (ADMM) for solving multinomial logistic regression (MLR) problems. Our method is geared toward supervised classification tasks with many examples and features. It decouples the nonlinear optimization problem in MLR into three steps that can be solved efficiently. In particular, each iteration of ADMM-Softmax consists of a linear least-squares problem, a set of independent small-scale smooth, convex problems, and a trivial dual variable update. Solution of the least-squares problem can be be accelerated by pre-computing a factorization or preconditioner, and the separability in the smooth, convex problem can be easily parallelized across examples. For two image classification problems, we demonstrate that ADMM-Softmax leads to improved generalization compared to a Newton-Krylov, a quasi Newton, and a stochastic gradient descent method

    Safeguarded Dynamic Label Regression for Generalized Noisy Supervision

    Full text link
    Learning with noisy labels, which aims to reduce expensive labors on accurate annotations, has become imperative in the Big Data era. Previous noise transition based method has achieved promising results and presented a theoretical guarantee on performance in the case of class-conditional noise. However, this type of approaches critically depend on an accurate pre-estimation of the noise transition, which is usually impractical. Subsequent improvement adapts the pre-estimation along with the training progress via a Softmax layer. However, the parameters in the Softmax layer are highly tweaked for the fragile performance due to the ill-posed stochastic approximation. To address these issues, we propose a Latent Class-Conditional Noise model (LCCN) that naturally embeds the noise transition under a Bayesian framework. By projecting the noise transition into a Dirichlet-distributed space, the learning is constrained on a simplex based on the whole dataset, instead of some ad-hoc parametric space. We then deduce a dynamic label regression method for LCCN to iteratively infer the latent labels, to stochastically train the classifier and to model the noise. Our approach safeguards the bounded update of the noise transition, which avoids previous arbitrarily tuning via a batch of samples. We further generalize LCCN for open-set noisy labels and the semi-supervised setting. We perform extensive experiments with the controllable noise data sets, CIFAR-10 and CIFAR-100, and the agnostic noise data sets, Clothing1M and WebVision17. The experimental results have demonstrated that the proposed model outperforms several state-of-the-art methods.Comment: Submitted to Transactions on Image Processin

    SHOPPER: A Probabilistic Model of Consumer Choice with Substitutes and Complements

    Full text link
    We develop SHOPPER, a sequential probabilistic model of shopping data. SHOPPER uses interpretable components to model the forces that drive how a customer chooses products; in particular, we designed SHOPPER to capture how items interact with other items. We develop an efficient posterior inference algorithm to estimate these forces from large-scale data, and we analyze a large dataset from a major chain grocery store. We are interested in answering counterfactual queries about changes in prices. We found that SHOPPER provides accurate predictions even under price interventions, and that it helps identify complementary and substitutable pairs of products.Comment: Published at Annals of Applied Statistics. 27 pages, 4 figure

    Multi-modal Geolocation Estimation Using Deep Neural Networks

    Full text link
    Estimating the location where an image was taken based solely on the contents of the image is a challenging task, even for humans, as properly labeling an image in such a fashion relies heavily on contextual information, and is not as simple as identifying a single object in the image. Thus any methods which attempt to do so must somehow account for these complexities, and no single model to date is completely capable of addressing all challenges. This work contributes to the state of research in image geolocation inferencing by introducing a novel global meshing strategy, outlining a variety of training procedures to overcome the considerable data limitations when training these models, and demonstrating how incorporating additional information can be used to improve the overall performance of a geolocation inference model. In this work, it is shown that Delaunay triangles are an effective type of mesh for geolocation in relatively low volume scenarios when compared to results from state of the art models which use quad trees and an order of magnitude more training data. In addition, the time of posting, learned user albuming, and other meta data are easily incorporated to improve geolocation by up to 11% for country-level (750 km) locality accuracy to 3% for city-level (25 km) localities

    Backpropagation through the Void: Optimizing control variates for black-box gradient estimation

    Full text link
    Gradient-based optimization is the foundation of deep learning and reinforcement learning. Even when the mechanism being optimized is unknown or not differentiable, optimization using high-variance or biased gradient estimates is still often the best strategy. We introduce a general framework for learning low-variance, unbiased gradient estimators for black-box functions of random variables. Our method uses gradients of a neural network trained jointly with model parameters or policies, and is applicable in both discrete and continuous settings. We demonstrate this framework for training discrete latent-variable models. We also give an unbiased, action-conditional extension of the advantage actor-critic reinforcement learning algorithm.Comment: Published at ICLR 201
    corecore