3,061 research outputs found

    Multidimensional Quasi-Monte Carlo Malliavin Greeks

    Get PDF
    We investigate the use of Malliavin calculus in order to calculate the Greeks of multidimensional complex path-dependent options by simulation. For this purpose, we extend the formulas employed by Montero and Kohatsu-Higa to the multidimensional case. The multidimensional setting shows the convenience of the Malliavin Calculus approach over different techniques that have been previously proposed. Indeed, these techniques may be computationally expensive and do not provide flexibility for variance reduction. In contrast, the Malliavin approach exhibits a higher flexibility by providing a class of functions that return the same expected value (the Greek) with different accuracies. This versatility for variance reduction is not possible without the use of the generalized integral by part formula of Malliavin Calculus. In the multidimensional context, we find convenient formulas that permit to improve the localization technique, introduced in Fourni\'e et al and reduce both the computational cost and the variance. Moreover, we show that the parameters employed for variance reduction can be obtained \textit{on the flight} in the simulation. We illustrate the efficiency of the proposed procedures, coupled with the enhanced version of Quasi-Monte Carlo simulations as discussed in Sabino, for the numerical estimation of the Deltas of call, digital Asian-style and Exotic basket options with a fixed and a floating strike price in a multidimensional Black-Scholes market.Comment: 22 pages, 6 figure

    Smoking Adjoints: fast evaluation of Greeks in Monte Carlo calculations

    Get PDF
    This paper presents an adjoint method to accelerate the calculation of Greeks by Monte Carlo simulation. The method calculates price sensitivities along each path; but in contrast to a forward pathwise calculation, it works backward recursively using adjoint variables. Along each path, the forward and adjoint implementations produce the same values, but the adjoint method rearranges the calculations to generate potential computational savings. The adjoint method outperforms a forward implementation in calculating the sensitivities of a small number of outputs to a large number of inputs. This applies, for example, in estimating the sensitivities of an interest rate derivatives book to multiple points along an initial forward curve or the sensitivities of an equity derivatives book to multiple points on a volatility surface. We illustrate the application of the method in the setting of the LIBOR market model. Numerical results confirm that the computational advantage of the adjoint method grows in proportion to the number of initial forward rates

    Multilevel Monte Carlo methods for applications in finance

    Full text link
    Since Giles introduced the multilevel Monte Carlo path simulation method [18], there has been rapid development of the technique for a variety of applications in computational finance. This paper surveys the progress so far, highlights the key features in achieving a high rate of multilevel variance convergence, and suggests directions for future research.Comment: arXiv admin note: text overlap with arXiv:1202.6283; and with arXiv:1106.4730 by other author

    Monte Carlo Greeks for financial products via approximative transition densities

    Full text link
    In this paper we introduce efficient Monte Carlo estimators for the valuation of high-dimensional derivatives and their sensitivities (''Greeks''). These estimators are based on an analytical, usually approximative representation of the underlying density. We study approximative densities obtained by the WKB method. The results are applied in the context of a Libor market model.Comment: 24 page

    Sequential Monte Carlo Methods for Option Pricing

    Full text link
    In the following paper we provide a review and development of sequential Monte Carlo (SMC) methods for option pricing. SMC are a class of Monte Carlo-based algorithms, that are designed to approximate expectations w.r.t a sequence of related probability measures. These approaches have been used, successfully, for a wide class of applications in engineering, statistics, physics and operations research. SMC methods are highly suited to many option pricing problems and sensitivity/Greek calculations due to the nature of the sequential simulation. However, it is seldom the case that such ideas are explicitly used in the option pricing literature. This article provides an up-to date review of SMC methods, which are appropriate for option pricing. In addition, it is illustrated how a number of existing approaches for option pricing can be enhanced via SMC. Specifically, when pricing the arithmetic Asian option w.r.t a complex stochastic volatility model, it is shown that SMC methods provide additional strategies to improve estimation.Comment: 37 Pages, 2 Figure

    Vibrato Monte Carlo and the calculation of greeks

    Get PDF
    In computational ¯nance Monte Carlo simulation can be used to calculate the correct prices of ¯nancial options, and to compute the values of the as- sociated Greeks (the derivatives of the option price with respect to certain input parameters). The main methods used for the calculation of Greeks are finite difference, likelihood ratio, and pathwise sensitivity. Each of these has its limitations and in particular the pathwise sensitivity approach may not be used for an option whose payoff function is discontinuous. Vibrato Monte Carlo is a new idea that addresses the limitations of previous methods; it combines the pathwise sensitivity approach for the SDE path calculation with the likelihood ratio method for payoff evaluation. This thesis discusses Vibrato Monte Carlo approximations for a digital option on an asset follow- ing one-dimensional geometric Brownian motion

    Quasi-Monte Carlo methods for calculating derivatives sensitivities on the GPU

    Full text link
    The calculation of option Greeks is vital for risk management. Traditional pathwise and finite-difference methods work poorly for higher-order Greeks and options with discontinuous payoff functions. The Quasi-Monte Carlo-based conditional pathwise method (QMC-CPW) for options Greeks allows the payoff function of options to be effectively smoothed, allowing for increased efficiency when calculating sensitivities. Also demonstrated in literature is the increased computational speed gained by applying GPUs to highly parallelisable finance problems such as calculating Greeks. We pair QMC-CPW with simulation on the GPU using the CUDA platform. We estimate the delta, vega and gamma Greeks of three exotic options: arithmetic Asian, binary Asian, and lookback. Not only are the benefits of QMC-CPW shown through variance reduction factors of up to 1.0×10181.0 \times 10^{18}, but the increased computational speed through usage of the GPU is shown as we achieve speedups over sequential CPU implementations of more than 200200x for our most accurate method.Comment: 26 pages, 12 figure
    • …
    corecore