20 research outputs found

    Instant Photorealistic Style Transfer: A Lightweight and Adaptive Approach

    Full text link
    In this paper, we propose an Instant Photorealistic Style Transfer (IPST) approach, designed to achieve instant photorealistic style transfer on super-resolution inputs without the need for pre-training on pair-wise datasets or imposing extra constraints. Our method utilizes a lightweight StyleNet to enable style transfer from a style image to a content image while preserving non-color information. To further enhance the style transfer process, we introduce an instance-adaptive optimization to prioritize the photorealism of outputs and accelerate the convergence of the style network, leading to a rapid training completion within seconds. Moreover, IPST is well-suited for multi-frame style transfer tasks, as it retains temporal and multi-view consistency of the multi-frame inputs such as video and Neural Radiance Field (NeRF). Experimental results demonstrate that IPST requires less GPU memory usage, offers faster multi-frame transfer speed, and generates photorealistic outputs, making it a promising solution for various photorealistic transfer applications.Comment: 8 pages (reference excluded), 6 figures, 4 table

    Two Birds, One Stone: A Unified Framework for Joint Learning of Image and Video Style Transfers

    Full text link
    Current arbitrary style transfer models are limited to either image or video domains. In order to achieve satisfying image and video style transfers, two different models are inevitably required with separate training processes on image and video domains, respectively. In this paper, we show that this can be precluded by introducing UniST, a Unified Style Transfer framework for both images and videos. At the core of UniST is a domain interaction transformer (DIT), which first explores context information within the specific domain and then interacts contextualized domain information for joint learning. In particular, DIT enables exploration of temporal information from videos for the image style transfer task and meanwhile allows rich appearance texture from images for video style transfer, thus leading to mutual benefits. Considering heavy computation of traditional multi-head self-attention, we present a simple yet effective axial multi-head self-attention (AMSA) for DIT, which improves computational efficiency while maintains style transfer performance. To verify the effectiveness of UniST, we conduct extensive experiments on both image and video style transfer tasks and show that UniST performs favorably against state-of-the-art approaches on both tasks. Code is available at https://github.com/NevSNev/UniST.Comment: Conference on International Conference on Computer Vision.(ICCV 2023

    CAP-VSTNet: Content Affinity Preserved Versatile Style Transfer

    Full text link
    Content affinity loss including feature and pixel affinity is a main problem which leads to artifacts in photorealistic and video style transfer. This paper proposes a new framework named CAP-VSTNet, which consists of a new reversible residual network and an unbiased linear transform module, for versatile style transfer. This reversible residual network can not only preserve content affinity but not introduce redundant information as traditional reversible networks, and hence facilitate better stylization. Empowered by Matting Laplacian training loss which can address the pixel affinity loss problem led by the linear transform, the proposed framework is applicable and effective on versatile style transfer. Extensive experiments show that CAP-VSTNet can produce better qualitative and quantitative results in comparison with the state-of-the-art methods.Comment: CVPR 202

    DiffStyler: Controllable Dual Diffusion for Text-Driven Image Stylization

    Full text link
    Despite the impressive results of arbitrary image-guided style transfer methods, text-driven image stylization has recently been proposed for transferring a natural image into the stylized one according to textual descriptions of the target style provided by the user. Unlike previous image-to-image transfer approaches, text-guided stylization progress provides users with a more precise and intuitive way to express the desired style. However, the huge discrepancy between cross-modal inputs/outputs makes it challenging to conduct text-driven image stylization in a typical feed-forward CNN pipeline. In this paper, we present DiffStyler on the basis of diffusion models. The cross-modal style information can be easily integrated as guidance during the diffusion progress step-by-step. In particular, we use a dual diffusion processing architecture to control the balance between the content and style of the diffused results. Furthermore, we propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image. We validate the proposed DiffStyler beyond the baseline methods through extensive qualitative and quantitative experiments

    AesPA-Net: Aesthetic Pattern-Aware Style Transfer Networks

    Full text link
    To deliver the artistic expression of the target style, recent studies exploit the attention mechanism owing to its ability to map the local patches of the style image to the corresponding patches of the content image. However, because of the low semantic correspondence between arbitrary content and artworks, the attention module repeatedly abuses specific local patches from the style image, resulting in disharmonious and evident repetitive artifacts. To overcome this limitation and accomplish impeccable artistic style transfer, we focus on enhancing the attention mechanism and capturing the rhythm of patterns that organize the style. In this paper, we introduce a novel metric, namely pattern repeatability, that quantifies the repetition of patterns in the style image. Based on the pattern repeatability, we propose Aesthetic Pattern-Aware style transfer Networks (AesPA-Net) that discover the sweet spot of local and global style expressions. In addition, we propose a novel self-supervisory task to encourage the attention mechanism to learn precise and meaningful semantic correspondence. Lastly, we introduce the patch-wise style loss to transfer the elaborate rhythm of local patterns. Through qualitative and quantitative evaluations, we verify the reliability of the proposed pattern repeatability that aligns with human perception, and demonstrate the superiority of the proposed framework.Comment: Accepted by ICCV 2023. Code is available at this https://github.com/Kibeom-Hong/AesPA-Ne

    NeAT: Neural Artistic Tracing for Beautiful Style Transfer

    Full text link
    Style transfer is the task of reproducing the semantic contents of a source image in the artistic style of a second target image. In this paper, we present NeAT, a new state-of-the art feed-forward style transfer method. We re-formulate feed-forward style transfer as image editing, rather than image generation, resulting in a model which improves over the state-of-the-art in both preserving the source content and matching the target style. An important component of our model's success is identifying and fixing "style halos", a commonly occurring artefact across many style transfer techniques. In addition to training and testing on standard datasets, we introduce the BBST-4M dataset, a new, large scale, high resolution dataset of 4M images. As a component of curating this data, we present a novel model able to classify if an image is stylistic. We use BBST-4M to improve and measure the generalization of NeAT across a huge variety of styles. Not only does NeAT offer state-of-the-art quality and generalization, it is designed and trained for fast inference at high resolution

    WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement and Beyond

    Full text link
    Underwater images suffer from light refraction and absorption, which impairs visibility and interferes the subsequent applications. Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice. To balance the visual quality and application, we propose a heuristic normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow. Specifically, we first develop an invertible mapping to achieve the translation between the degraded image and its clear counterpart. Considering the differentiability and interpretability, we incorporate the heuristic prior into the data-driven mapping procedure, where the ambient light and medium transmission coefficient benefit credible generation. Furthermore, we introduce a detection perception module to transmit the implicit semantic guidance into the enhancement procedure, where the enhanced images hold more detection-favorable features and are able to promote the detection performance. Extensive experiments prove the superiority of our WaterFlow, against state-of-the-art methods quantitatively and qualitatively.Comment: 10 pages, 13 figure

    Playing Lottery Tickets in Style Transfer Models

    Get PDF
    Style transfer has achieved great success and attracted a wide range of attention from both academic and industrial communities due to its flexible application scenarios. However, the dependence on a pretty large VGG-based autoencoder leads to existing style transfer models having high parameter complexities, which limits their applications on resource-constrained devices. Compared with many other tasks, the compression of style transfer models has been less explored. Recently, the lottery ticket hypothesis (LTH) has shown great potential in finding extremely sparse matching subnetworks which can achieve on par or even better performance than the original full networks when trained in isolation. In this work, we for the first time perform an empirical study to verify whether such trainable matching subnetworks also exist in style transfer models. Specifically, we take two most popular style transfer models, i.e., AdaIN and SANet, as the main testbeds, which represent global and local transformation based style transfer methods respectively. We carry out extensive experiments and comprehensive analysis, and draw the following conclusions. (1) Compared with fixing the VGG encoder, style transfer models can benefit more from training the whole network together. (2) Using iterative magnitude pruning, we find the matching subnetworks at 89.2% sparsity in AdaIN and 73.7% sparsity in SANet, which demonstrates that style transfer models can play lottery tickets too. (3) The feature transformation module should also be pruned to obtain a much sparser model without affecting the existence and quality of the matching subnetworks. (4) Besides AdaIN and SANet, other models such as LST, MANet, AdaAttN and MCCNet can also play lottery tickets, which shows that LTH can be generalized to various style transfer models
    corecore